How to load a model from an HDF5 file in Keras?
What I tried:
model = Sequential()
model.add(Dense(64, input_dim=14, init='uniform'))
model.add(LeakyReLU(alpha=0.3))
model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))
model.add(Dropout(0.5))
model.add(Dense(64, init='uniform'))
model.add(LeakyReLU(alpha=0.3))
model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))
model.add(Dropout(0.5))
model.add(Dense(2, init='uniform'))
model.add(Activation('softmax'))
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='binary_crossentropy', optimizer=sgd)
checkpointer = ModelCheckpoint(filepath="/weights.hdf5", verbose=1, save_best_only=True)
model.fit(X_train, y_train, nb_epoch=20, batch_size=16, show_accuracy=True, validation_split=0.2, verbose = 2, callbacks=[checkpointer])
The above code successfully saves the best model to a file named weights.hdf5. What I want to do is then load that model. The below code shows how I tried to do so:
model2 = Sequential()
model2.load_weights("/Users/Desktop/SquareSpace/weights.hdf5")
This is the error I get:
IndexError Traceback (most recent call last)
<ipython-input-101-ec968f9e95c5> in <module>()
1 model2 = Sequential()
----> 2 model2.load_weights("/Users/Desktop/SquareSpace/weights.hdf5")
/Applications/anaconda/lib/python2.7/site-packages/keras/models.pyc in load_weights(self, filepath)
582 g = f['layer_{}'.format(k)]
583 weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
--> 584 self.layers[k].set_weights(weights)
585 f.close()
586
IndexError: list index out of range
from keras.models import load_model
thenmodel = load_model('model.h5')
– Bachman