I recently learned about strides in the answer to this post, and was wondering how I could use them to compute a moving average filter more efficiently than what I proposed in this post (using convolution filters).
This is what I have so far. It takes a view of the original array then rolls it by the necessary amount and sums the kernel values to compute the average. I am aware that the edges are not handled correctly, but I can take care of that afterward... Is there a better and faster way? The objective is to filter large floating point arrays up to 5000x5000 x 16 layers in size, a task that scipy.ndimage.filters.convolve
is fairly slow at.
Note that I am looking for 8-neighbour connectivity, that is a 3x3 filter takes the average of 9 pixels (8 around the focal pixel) and assigns that value to the pixel in the new image.
import numpy, scipy
filtsize = 3
a = numpy.arange(100).reshape((10,10))
b = numpy.lib.stride_tricks.as_strided(a, shape=(a.size,filtsize), strides=(a.itemsize, a.itemsize))
for i in range(0, filtsize-1):
if i > 0:
b += numpy.roll(b, -(pow(filtsize,2)+1)*i, 0)
filtered = (numpy.sum(b, 1) / pow(filtsize,2)).reshape((a.shape[0],a.shape[1]))
scipy.misc.imsave("average.jpg", filtered)
EDIT Clarification on how I see this working:
Current code:
- use stride_tricks to generate an array like [[0,1,2],[1,2,3],[2,3,4]...] which corresponds to the top row of the filter kernel.
- Roll along the vertical axis to get the middle row of the kernel [[10,11,12],[11,12,13],[13,14,15]...] and add it to the array I got in 1)
- Repeat to get the bottom row of the kernel [[20,21,22],[21,22,23],[22,23,24]...]. At this point, I take the sum of each row and divide it by the number of elements in the filter, giving me the average for each pixel, (shifted by 1 row and 1 col, and with some oddities around edges, but I can take care of that later).
What I was hoping for is a better use of stride_tricks to get the 9 values or the sum of the kernel elements directly, for the entire array, or that someone can convince me of another more efficient method...
*** glibc detected *** python: double free or corruption (!prev): 0x0000000002526d30 ***
. – Shuttlecocka
. – Montemontefiascone