I've also written something myself that just uses the OpenCV Python interface and I didn't use scipy
. drawMatches
is part of OpenCV 3.0.0 and isn't part of OpenCV 2, which is what I'm currently using. Even though I'm late to the party, here's my own implementation that mimics drawMatches
to the best of my ability.
I've provided my own images where one is of a camera man, and the other one is the same image but rotated by 55 degrees counter-clockwise.
The basic premise of what I wrote is that I allocate an output RGB image where the amount of rows is the maximum of the two images to accommodate for placing both of the images in the output image and the columns are simply the summation of both the columns together. I place each image in their corresponding spots, then run through a loop of all of the matched keypoints. I extract which keypoints matched between the two images, then extract their (x,y)
co-ordinates. I then draw circles at each of the detected locations, then draw a line connecting these circles together.
Bear in mind that the detected keypoint in the second image is with respect to its own co-ordinate system. If you want to place this in the final output image, you need to offset the column co-ordinate by the amount of columns from the first image so that the column co-ordinate is with respect to the co-ordinate system of the output image.
Without further ado:
import numpy as np
import cv2
def drawMatches(img1, kp1, img2, kp2, matches):
"""
My own implementation of cv2.drawMatches as OpenCV 2.4.9
does not have this function available but it's supported in
OpenCV 3.0.0
This function takes in two images with their associated
keypoints, as well as a list of DMatch data structure (matches)
that contains which keypoints matched in which images.
An image will be produced where a montage is shown with
the first image followed by the second image beside it.
Keypoints are delineated with circles, while lines are connected
between matching keypoints.
img1,img2 - Grayscale images
kp1,kp2 - Detected list of keypoints through any of the OpenCV keypoint
detection algorithms
matches - A list of matches of corresponding keypoints through any
OpenCV keypoint matching algorithm
"""
# Create a new output image that concatenates the two images together
# (a.k.a) a montage
rows1 = img1.shape[0]
cols1 = img1.shape[1]
rows2 = img2.shape[0]
cols2 = img2.shape[1]
out = np.zeros((max([rows1,rows2]),cols1+cols2,3), dtype='uint8')
# Place the first image to the left
out[:rows1,:cols1,:] = np.dstack([img1, img1, img1])
# Place the next image to the right of it
out[:rows2,cols1:cols1+cols2,:] = np.dstack([img2, img2, img2])
# For each pair of points we have between both images
# draw circles, then connect a line between them
for mat in matches:
# Get the matching keypoints for each of the images
img1_idx = mat.queryIdx
img2_idx = mat.trainIdx
# x - columns
# y - rows
(x1,y1) = kp1[img1_idx].pt
(x2,y2) = kp2[img2_idx].pt
# Draw a small circle at both co-ordinates
# radius 4
# colour blue
# thickness = 1
cv2.circle(out, (int(x1),int(y1)), 4, (255, 0, 0), 1)
cv2.circle(out, (int(x2)+cols1,int(y2)), 4, (255, 0, 0), 1)
# Draw a line in between the two points
# thickness = 1
# colour blue
cv2.line(out, (int(x1),int(y1)), (int(x2)+cols1,int(y2)), (255, 0, 0), 1)
# Show the image
cv2.imshow('Matched Features', out)
cv2.waitKey(0)
cv2.destroyAllWindows()
To illustrate that this works, here are the two images that I used:
I used OpenCV's ORB detector to detect the keypoints, and used the normalized Hamming distance as the distance measure for similarity as this is a binary descriptor. As such:
import numpy as np
import cv2
img1 = cv2.imread('cameraman.png') # Original image
img2 = cv2.imread('cameraman_rot55.png') # Rotated image
# Create ORB detector with 1000 keypoints with a scaling pyramid factor
# of 1.2
orb = cv2.ORB(1000, 1.2)
# Detect keypoints of original image
(kp1,des1) = orb.detectAndCompute(img1, None)
# Detect keypoints of rotated image
(kp2,des2) = orb.detectAndCompute(img2, None)
# Create matcher
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# Do matching
matches = bf.match(des1,des2)
# Sort the matches based on distance. Least distance
# is better
matches = sorted(matches, key=lambda val: val.distance)
# Show only the top 10 matches
drawMatches(img1, kp1, img2, kp2, matches[:10])
This is the image I get:
TypeError: integer argument expected, got float
– Fowl