I have some data in the following format (either RDD or Spark DataFrame):
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
rdd = sc.parallelize([('X01',41,'US',3),
('X01',41,'UK',1),
('X01',41,'CA',2),
('X02',72,'US',4),
('X02',72,'UK',6),
('X02',72,'CA',7),
('X02',72,'XX',8)])
# convert to a Spark DataFrame
schema = StructType([StructField('ID', StringType(), True),
StructField('Age', IntegerType(), True),
StructField('Country', StringType(), True),
StructField('Score', IntegerType(), True)])
df = sqlContext.createDataFrame(rdd, schema)
What I would like to do is to 'reshape' the data, convert certain rows in Country(specifically US, UK and CA) into columns:
ID Age US UK CA
'X01' 41 3 1 2
'X02' 72 4 6 7
Essentially, I need something along the lines of Python's pivot
workflow:
categories = ['US', 'UK', 'CA']
new_df = df[df['Country'].isin(categories)].pivot(index = 'ID',
columns = 'Country',
values = 'Score')
My dataset is rather large so I can't really collect()
and ingest the data into memory to do the reshaping in Python itself. Is there a way to convert Python's .pivot()
into an invokable function while mapping either an RDD or a Spark DataFrame? Any help would be appreciated!