My data looks like this:
# A tibble: 6 x 4
name val time x1
<chr> <dbl> <date> <dbl>
1 C Farolillo 7 2016-04-20 51.5
2 C Farolillo 3 2016-04-21 56.3
3 C Farolillo 7 2016-04-22 56.3
4 C Farolillo 13 2016-04-23 57.9
5 C Farolillo 7 2016-04-24 58.7
6 C Farolillo 9 2016-04-25 59.0
I am trying to use the pivot_wider
function to expand out the data based on the name
column. I use the following code:
yy <- d %>%
pivot_wider(., names_from = name, values_from = val)
Which gives me the following warning message:
Warning message:
Values in `val` are not uniquely identified; output will contain list-cols.
* Use `values_fn = list(val = list)` to suppress this warning.
* Use `values_fn = list(val = length)` to identify where the duplicates arise
* Use `values_fn = list(val = summary_fun)` to summarise duplicates
The output looks like:
time x1 out1 out2
2016-04-20 51.50000 <dbl> <dbl>
2 2016-04-21 56.34615 <dbl> <dbl>
3 2016-04-22 56.30000 <dbl> <dbl>
4 2016-04-23 57.85714 <dbl> <dbl>
5 2016-04-24 58.70968 <dbl> <dbl>
6 2016-04-25 58.96774 <dbl> <dbl>
I know that here mentions the issue and to resolve it they suggest using summary statistics. However I have time series data and thus do not want to use summary statistics since each day has a single value (and not multiple values).
I know the problem is because the val
column has duplicates (i.e. in the above example 7 occurs 3 times.
Any suggestions on how to pivot_wider and overcome this issue?
Data:
d <- structure(list(name = c("C Farolillo", "C Farolillo", "C Farolillo",
"C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo",
"C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo",
"C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo",
"C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo",
"C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo",
"C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo",
"C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo",
"C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo",
"C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo", "C Farolillo",
"C Farolillo", "C Farolillo", "C Farolillo", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica", "Plaza Eliptica",
"Plaza Eliptica", "Plaza Eliptica"), val = c(7, 3, 7, 13, 7,
9, 20, 19, 4, 5, 5, 2, 6, 6, 16, 13, 7, 6, 3, 3, 6, 10, 5, 3,
5, 3, 4, 4, 10, 11, 4, 13, 8, 2, 8, 10, 3, 10, 14, 4, 2, 4, 6,
6, 8, 8, 3, 3, 13, 10, 13, 32, 25, 31, 34, 26, 33, 35, 43, 22,
22, 21, 10, 33, 33, 48, 47, 27, 23, 11, 13, 25, 31, 20, 16, 10,
9, 23, 11, 23, 26, 16, 34, 17, 4, 24, 21, 10, 26, 32, 10, 5,
9, 19, 14, 27, 27, 10, 8, 28, 32, 25), time = structure(c(16911,
16912, 16913, 16914, 16915, 16916, 16917, 16918, 16919, 16920,
16921, 16922, 16923, 16923, 16924, 16925, 16926, 16927, 16928,
16929, 16930, 16931, 16932, 16933, 16934, 16935, 16936, 16937,
16938, 16939, 16940, 16941, 16942, 16943, 16944, 16945, 16946,
16947, 16948, 16949, 16950, 16951, 16952, 16953, 16954, 16955,
16956, 16957, 16958, 16959, 16960, 16911, 16912, 16913, 16914,
16915, 16916, 16917, 16918, 16919, 16920, 16921, 16922, 16923,
16923, 16924, 16925, 16926, 16927, 16928, 16929, 16930, 16931,
16932, 16933, 16934, 16935, 16936, 16937, 16938, 16939, 16940,
16941, 16942, 16943, 16944, 16945, 16946, 16947, 16948, 16949,
16950, 16951, 16952, 16953, 16954, 16955, 16956, 16957, 16958,
16959, 16960), class = "Date"), x1 = c(51.5, 56.3461538461538,
56.3, 57.8571428571429, 58.7096774193548, 58.9677419354839, 64.4615384615385,
61.9310344827586, 60.3214285714286, 59.4137931034483, 59.5806451612903,
57.3448275862069, 64.0333333333333, 64.0333333333333, 70.15625,
71.3636363636364, 62.8125, 56.4375, 56.4516129032258, 51.741935483871,
52.84375, 53.09375, 52.969696969697, 54, 54.3870967741936, 60.3870967741936,
64.4516129032258, 66.2903225806452, 68.2333333333333, 69.7741935483871,
70.5806451612903, 73.8275862068966, 72.8181818181818, 64.6764705882353,
64.4838709677419, 68.7741935483871, 62.1764705882353, 68.969696969697,
70.1935483870968, 59.6774193548387, 59.9677419354839, 63.125,
67.5882352941177, 71.4705882352941, 73.8529411764706, 76.1935483870968,
72.6451612903226, 76.0645161290323, 76.4193548387097, 81.7741935483871,
85.0645161290323, 51.5, 56.3461538461538, 56.3, 57.8571428571429,
58.7096774193548, 58.9677419354839, 64.4615384615385, 61.9310344827586,
60.3214285714286, 59.4137931034483, 59.5806451612903, 57.3448275862069,
64.0333333333333, 64.0333333333333, 70.15625, 71.3636363636364,
62.8125, 56.4375, 56.4516129032258, 51.741935483871, 52.84375,
53.09375, 52.969696969697, 54, 54.3870967741936, 60.3870967741936,
64.4516129032258, 66.2903225806452, 68.2333333333333, 69.7741935483871,
70.5806451612903, 73.8275862068966, 72.8181818181818, 64.6764705882353,
64.4838709677419, 68.7741935483871, 62.1764705882353, 68.969696969697,
70.1935483870968, 59.6774193548387, 59.9677419354839, 63.125,
67.5882352941177, 71.4705882352941, 73.8529411764706, 76.1935483870968,
72.6451612903226, 76.0645161290323, 76.4193548387097, 81.7741935483871,
85.0645161290323)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-102L))
select()
: ! Can't subset columns that don't exist. ✖ Columnrow
doesn't exist. – Bournemouth