The purpose of hashing is to produce an index into the underlying array, which enables you to jump straight to the element in question. This is usually accomplished by dividing the hash by the size of the array and taking the remainder index = hash%capacity
.
The type/size of the hash is typically that of the smallest integer large enough to index all of RAM. On a 32 bit system this is a 32 bit integer. On a 64 bit system this is a 64 bit integer. In C++ this corresponds to unsigned int
and unsigned long long
respectively. To be pedantic C++ technically specifies minimum sizes for its primitives i.e. at least 32 bits and at least 64 bits, but that's beside the point. For the sake of making code portable C++ also provides a size_t
primative which corresponds to the appropriate unsigned integer. You'll see that type a lot in for loops which index into arrays, in well written code. In the case of a language like Python the integer primitive grows to whatever size it needs to be. This is typically implemented in the standard libraries of other languages under the name "Big Integer". To deal with this the Python programming language simply truncates whatever value you return from the __hash__()
method down to the appropriate size.
On this score I think it's worth giving a word to the wise. The result of arithmetic is the same regardless of whether you compute the remainder at the end or at each step along the way. Truncation is equivalent to computing the remainder modulo 2^n where n is the number of bits you leave intact. Now you might think that computing the remainder at each step would be foolish due to the fact that you're incurring an extra computation at every step along the way. However this is not the case for two reasons. First, computationally speaking, truncation is extraordinarily cheap, far cheaper than generalized division. Second, and this is the real reason as the first is insufficient, and the claim would generally hold even in its absence, taking the remainder at each step keeps the number (relatively) small. So instead of something like product = 31*product + hash(array[index])
, you'll want something like product = hash(31*product + hash(array[index]))
. The primary purpose of the inner hash() call is to take something which might not be a number and turn it into one, where as the primary purpose of the outer hash() call is to take a potentially oversized number and truncate it. Lastly I'll note that in languages like C++ where integer primitives have a fixed size this truncation step is automatically performed after every operation.
Now for the elephant in the room. You've probably realized that hash codes being generally speaking smaller than the objects they correspond to, not to mention that the indices derived from them are again generally speaking even smaller still, it's entirely possible for two objects to hash to the same index. This is called a hash collision. Data structures backed by a hash table like Python's set
or dict
or C++'s std::unordered_set
or std::unordered_map
primarily handle this in one of two ways. The first is called separate chaining, and the second is called open addressing. In separate chaining the array functioning as the hash table is itself an array of lists (or in some cases where the developer feels like getting fancy, some other data structure like a binary search tree), and every time an element hashes to a given index it gets added to the corresponding list. In open addressing if an element hashes to an index which is already occupied the data structure probes over to the next index (or in some cases where the developer feels like getting fancy, an index defined by some other function as is the case in quadratic probing) and so on until it finds an empty slot, of course wrapping around when it reaches the end of the array.
Next a word about load factor. There is of course an inherent space/time trade off when it comes to increasing or decreasing the load factor. The higher the load factor the less wasted space the table consumes; however this comes at the expense of increasing the likelihood of performance degrading collisions. Generally speaking hash tables implemented with separate chaining are less sensitive to load factor than those implemented with open addressing. This is due to the phenomenon known as clustering where by clusters in an open addressed hash table tend to become larger and larger in a positive feed back loop as a result of the fact that the larger they become the more likely they are to contain the preferred index of a newly added element. This is actually the reason why the afore mentioned quadratic probing scheme, which progressively increases the jump distance, is often preferred. In the extreme case of load factors greater than 1, open addressing can't work at all as the number of elements exceeds the available space. That being said load factors greater than 1 are exceedingly rare in general. At time of writing Python's set
and dict
classes employ a max load factor of 2/3 where as Java's java.util.HashSet
and java.util.HashMap
use 3/4 with C++'s std::unordered_set
and std::unordered_map
taking the cake with a max load factor of 1. Unsurprisingly Python's hash table backed data structures handle collisions with open addressing where as their Java and C++ counterparts do it with separate chaining.
Last a comment about table size. When the max load factor is exceeded, the size of the hash table must of course be grown. Due to the fact that this requires that every element there in be reindexed, it's highly inefficient to grow the table by a fixed amount. To do so would incur order size operations every time a new element is added. The standard fix for this problem is the same as that employed by most dynamic array implementations. At every point where we need to grow the table we simply increase its size by its current size. This unsurprisingly is known as table doubling.