Hash table - why is it faster than arrays?
Asked Answered
Y

7

83

In cases where I have a key for each element and I don't know the index of the element into an array, hashtables perform better than arrays (O(1) vs O(n)).

Why is that? I mean: I have a key, I hash it.. I have the hash.. shouldn't the algorithm compare this hash against every element's hash? I think there's some trick behind the memory disposition, isn't it?

Yttrium answered 18/8, 2012 at 18:3 Comment(0)
P
107

In cases where I have a key for each element and I don't know the index of the element into an array, hashtables perform better than arrays (O(1) vs O(n)).

The hash table search performs O(1) in the average case. In the worst case, the hash table search performs O(n): when you have collisions and the hash function always returns the same slot. One may think "this is a remote situation," but a good analysis should consider it. In this case you should iterate through all the elements like in an array or linked lists (O(n)).

Why is that? I mean: I have a key, I hash it.. I have the hash.. shouldn't the algorithm compare this hash against every element's hash? I think there's some trick behind the memory disposition, isn't it?

You have a key, You hash it.. you have the hash: the index of the hash table where the element is present (if it has been located before). At this point you can access the hash table record in O(1). If the load factor is small, it's unlikely to see more than one element there. So, the first element you see should be the element you are looking for. Otherwise, if you have more than one element you must compare the elements you will find in the position with the element you are looking for. In this case you have O(1) + O(number_of_elements).

In the average case, the hash table search complexity is O(1) + O(load_factor) = O(1 + load_factor).

Remember, load_factor = n in the worst case. So, the search complexity is O(n) in the worst case.

I don't know what you mean with "trick behind the memory disposition". Under some points of view, the hash table (with its structure and collisions resolution by chaining) can be considered a "smart trick".

Of course, the hash table analysis results can be proven by math.

Polivy answered 19/8, 2012 at 9:17 Comment(3)
Thank you guys :-) @ZoranPavlovic: I write answers for passion. The upvotes looks like: "I like you reply!" and they help to emphasize the good answers for the community.Polivy
How does the load factor = n in the worst case? If the load_factor is n/k where n is the number of elements and k is the size of the array, won't the load_factor be 1 in the worst case, since you cant store more than k elements in the hash table?Incult
Something I don't get : you say the worst case for hashtables is O(n) , where n is the total number of elements. However, the only circumstance in which you have to iterate linearly over elements is when there was a collision (in which case the bucket is some sort of array/linked list/tree). So are you saying that in the worst case, every single element in the hashtable caused a collision, and thus lookup is O(n) ? Is that even possible? Shouldn't it be O(m) where m is number of inserted elements that hash to the same value ?Autolithography
M
73

With arrays: if you know the value, you have to search on average half the values (unless sorted) to find its location.

With hashes: the location is generated based on the value. So, given that value again, you can calculate the same hash you calculated when inserting. Sometimes, more than 1 value results in the same hash, so in practice each "location" is itself an array (or linked list) of all the values that hash to that location. In this case, only this much smaller (unless it's a bad hash) array needs to be searched.

Melodiemelodion answered 18/8, 2012 at 18:9 Comment(4)
I know this is an ancient topic but thank you for your answer! This simple straightforward explanation is what made it finally click back into place for me. I kept thinking to myself, why the heck do I want to hash these things when I can just retrieve them from a simple array... Well because maybe I don't know its index, duh smacks forehead. :).Airwaves
Thank you! I've known for years that Hash Tables stored the values in various buckets (ideally with one value per bucket), however in all the reading I've done, no one has ever explained that the location of the bucket itself is essentially determined by the object being stored - so the very act of rehashing the value lets you know where to look for it. I suddenly get why Hash Tables have the potential to be so much faster than arrays. Short but excellent answer.Overscrupulous
This makes more sense to me than the accepted answer. Thanks.Paratuberculosis
Clean, simple, easy to understand answer. Thank you.Macroscopic
E
29

Hash tables are a bit more complex. They put elements in different buckets based on their hash % some value. In an ideal situation, each bucket holds very few items and there aren't many empty buckets.

Once you know the key, you compute the hash. Based on the hash, you know which bucket to look for. And as stated above, the number of items in each bucket should be relatively small.

Hash tables are doing a lot of magic internally to make sure buckets are as small as possible while not consuming too much memory for empty buckets. Also, much depends on the quality of the key -> hash function.

Wikipedia provides very comprehensive description of hash table.

Emmettemmey answered 18/8, 2012 at 18:5 Comment(1)
Hash tables don't always use buckets.Maddox
A
12

A Hash Table will not have to compare every element in the Hash. It will calculate the hashcode according to the key. For example, if the key is 4, then hashcode may be - 4*x*y. Now the pointer knows exactly which element to pick.

Whereas if it has been an array, it will have to traverse through the whole array to search for this element.

Anthropolatry answered 2/4, 2016 at 18:35 Comment(0)
S
5

Why is [it] that [hashtables perform lookups by key better than arrays (O(1) vs O(n))]? I mean: I have a key, I hash it.. I have the hash.. shouldn't the algorithm compare this hash against every element's hash? I think there's some trick behind the memory disposition, isn't it?

Once you have the hash, it lets you calculate an "ideal" or expected location in the array of buckets: commonly:

ideal bucket = hash % num_buckets

The problem is then that another value may have already hashed to that bucket, in which case the hash table implementation has two main choice:

1) try another bucket

2) let several distinct values "belong" to one bucket, perhaps by making the bucket hold a pointer into a linked list of values

For implementation 1, known as open addressing or closed hashing, you jump around other buckets: if you find your value, great; if you find a never-used bucket, then you can store your value in there if inserting, or you know you'll never find your value when searching. There's a potential for the searching to be even worse than O(n) if the way you traverse alternative buckets ends up searching the same bucket multiple times; for example, if you use quadratic probing you try the ideal bucket index +1, then +4, then +9, then +16 and so on - but you must avoid out-of-bounds bucket access using e.g. % num_buckets, so if there are say 12 buckets then ideal+4 and ideal+16 search the same bucket. It can be expensive to track which buckets have been searched, so it can be hard to know when to give up too: the implementation can be optimistic and assume it will always find either the value or an unused bucket (risking spinning forever), it can have a counter and after a threshold of tries either give up or start a linear bucket-by-bucket search.

For implementation 2, known as closed addressing or separate chaining, you have to search inside the container/data-structure of values that all hashed to the ideal bucket. How efficient this is depends on the type of container used. It's generally expected that the number of elements colliding at one bucket will be small, which is true of a good hash function with non-adversarial inputs, and typically true enough of even a mediocre hash function especially with a prime number of buckets. So, a linked list or contiguous array is often used, despite the O(n) search properties: linked lists are simple to implement and operate on, and arrays pack the data together for better memory cache locality and access speed. The worst possible case though is that every value in your table hashed to the same bucket, and the container at that bucket now holds all the values: your entire hash table is then only as efficient as the bucket's container. Some Java hash table implementations have started using binary trees if the number of elements hashing to the same buckets passes a threshold, to make sure complexity is never worse than O(log2n).

Python hashes are an example of 1 = open addressing = closed hashing. C++ std::unordered_set is an example of closed addressing = separate chaining.

Sussman answered 13/2, 2018 at 7:20 Comment(0)
P
3

The purpose of hashing is to produce an index into the underlying array, which enables you to jump straight to the element in question. This is usually accomplished by dividing the hash by the size of the array and taking the remainder index = hash%capacity.

The type/size of the hash is typically that of the smallest integer large enough to index all of RAM. On a 32 bit system this is a 32 bit integer. On a 64 bit system this is a 64 bit integer. In C++ this corresponds to unsigned int and unsigned long long respectively. To be pedantic C++ technically specifies minimum sizes for its primitives i.e. at least 32 bits and at least 64 bits, but that's beside the point. For the sake of making code portable C++ also provides a size_t primative which corresponds to the appropriate unsigned integer. You'll see that type a lot in for loops which index into arrays, in well written code. In the case of a language like Python the integer primitive grows to whatever size it needs to be. This is typically implemented in the standard libraries of other languages under the name "Big Integer". To deal with this the Python programming language simply truncates whatever value you return from the __hash__() method down to the appropriate size.

On this score I think it's worth giving a word to the wise. The result of arithmetic is the same regardless of whether you compute the remainder at the end or at each step along the way. Truncation is equivalent to computing the remainder modulo 2^n where n is the number of bits you leave intact. Now you might think that computing the remainder at each step would be foolish due to the fact that you're incurring an extra computation at every step along the way. However this is not the case for two reasons. First, computationally speaking, truncation is extraordinarily cheap, far cheaper than generalized division. Second, and this is the real reason as the first is insufficient, and the claim would generally hold even in its absence, taking the remainder at each step keeps the number (relatively) small. So instead of something like product = 31*product + hash(array[index]), you'll want something like product = hash(31*product + hash(array[index])). The primary purpose of the inner hash() call is to take something which might not be a number and turn it into one, where as the primary purpose of the outer hash() call is to take a potentially oversized number and truncate it. Lastly I'll note that in languages like C++ where integer primitives have a fixed size this truncation step is automatically performed after every operation.

Now for the elephant in the room. You've probably realized that hash codes being generally speaking smaller than the objects they correspond to, not to mention that the indices derived from them are again generally speaking even smaller still, it's entirely possible for two objects to hash to the same index. This is called a hash collision. Data structures backed by a hash table like Python's set or dict or C++'s std::unordered_set or std::unordered_map primarily handle this in one of two ways. The first is called separate chaining, and the second is called open addressing. In separate chaining the array functioning as the hash table is itself an array of lists (or in some cases where the developer feels like getting fancy, some other data structure like a binary search tree), and every time an element hashes to a given index it gets added to the corresponding list. In open addressing if an element hashes to an index which is already occupied the data structure probes over to the next index (or in some cases where the developer feels like getting fancy, an index defined by some other function as is the case in quadratic probing) and so on until it finds an empty slot, of course wrapping around when it reaches the end of the array.

Next a word about load factor. There is of course an inherent space/time trade off when it comes to increasing or decreasing the load factor. The higher the load factor the less wasted space the table consumes; however this comes at the expense of increasing the likelihood of performance degrading collisions. Generally speaking hash tables implemented with separate chaining are less sensitive to load factor than those implemented with open addressing. This is due to the phenomenon known as clustering where by clusters in an open addressed hash table tend to become larger and larger in a positive feed back loop as a result of the fact that the larger they become the more likely they are to contain the preferred index of a newly added element. This is actually the reason why the afore mentioned quadratic probing scheme, which progressively increases the jump distance, is often preferred. In the extreme case of load factors greater than 1, open addressing can't work at all as the number of elements exceeds the available space. That being said load factors greater than 1 are exceedingly rare in general. At time of writing Python's set and dict classes employ a max load factor of 2/3 where as Java's java.util.HashSet and java.util.HashMap use 3/4 with C++'s std::unordered_set and std::unordered_map taking the cake with a max load factor of 1. Unsurprisingly Python's hash table backed data structures handle collisions with open addressing where as their Java and C++ counterparts do it with separate chaining.

Last a comment about table size. When the max load factor is exceeded, the size of the hash table must of course be grown. Due to the fact that this requires that every element there in be reindexed, it's highly inefficient to grow the table by a fixed amount. To do so would incur order size operations every time a new element is added. The standard fix for this problem is the same as that employed by most dynamic array implementations. At every point where we need to grow the table we simply increase its size by its current size. This unsurprisingly is known as table doubling.

Poised answered 7/10, 2020 at 6:33 Comment(0)
M
-6

I think you answered your own question there. "shouldn't the algorithm compare this hash against every element's hash". That's kind of what it does when it doesn't know the index location of what you're searching for. It compares each element to find the one you're looking for:

E.g. Let's say you're looking for an item called "Car" inside an array of strings. You need to go through every item and check item.Hash() == "Car".Hash() to find out that that is the item you're looking for. Obviously it doesn't use the hash when searching always, but the example stands. Then you have a hash table. What a hash table does is it creates a sparse array, or sometimes array of buckets as the guy above mentioned. Then it uses the "Car".Hash() to deduce where in the sparse array your "Car" item is actually. This means that it doesn't have to search through the entire array to find your item.

Maddox answered 18/8, 2012 at 18:11 Comment(1)
You don't compare hashes when searching. You compute the hash which gives you the index in which the value resides, then you compare the values in the list you've found with the value you're looking forCapstone

© 2022 - 2024 — McMap. All rights reserved.