Other answers assume that the two input lists are finite. Frequently, idiomatic Haskell code includes infinite lists, and so it is worthwhile commenting briefly on how to produce an infinite Cartesian product in case that is needed.
The standard approach is to use diagonalization; writing the one input along the top and the other input along the left, we could write a two-dimensional table that contained the full Cartesian product like this:
1 2 3 4 . . .
a a1 a2 a3 a4 . . .
b b1 b2 b3 b4 . . .
c c1 c2 c3 c4 . . .
d d1 d2 d3 d4 . . .
. . . . . .
. . . . . .
. . . . . .
Of course, working across any single row will give us infinitely elements before it reaches the next row; similarly going column-wise would be disastrous. But we can go along diagonals that go down and to the left, starting again in a bit farther to the right each time we reach the edge of the grid.
a1
a2
b1
a3
b2
c1
a4
b3
c2
d1
...and so on. In order, this would give us:
a1 a2 b1 a3 b2 c1 a4 b3 c2 d1 ...
To code this in Haskell, we can first write the version that produces the two-dimensional table:
cartesian2d :: [a] -> [b] -> [[(a, b)]]
cartesian2d as bs = [[(a, b) | a <- as] | b <- bs]
An inefficient method of diagonalizing is to then iterate first along diagonals and then along depth of each diagonal, pulling out the appropriate element each time. For simplicity of explanation, I'll assume that both the input lists are infinite, so we don't have to mess around with bounds checking.
diagonalBad :: [[a]] -> [a]
diagonalBad xs =
[ xs !! row !! col
| diagonal <- [0..]
, depth <- [0..diagonal]
, let row = depth
col = diagonal - depth
]
This implementation is a bit unfortunate: the repeated list indexing operation !!
gets more and more expensive as we go, giving quite a bad asymptotic performance. A more efficient implementation will take the above idea but implement it using zippers. So, we'll divide our infinite grid into three shapes like this:
a1 a2 / a3 a4 . . .
/
/
b1 / b2 b3 b4 . . .
/
/
/
c1 c2 c3 c4 . . .
---------------------------------
d1 d2 d3 d4 . . .
. . . . .
. . . . .
. . . . .
The top left triangle will be the bits we've already emitted; the top right quadrilateral will be rows that have been partially emitted but will still contribute to the result; and the bottom rectangle will be rows that we have not yet started emitting. To begin with, the upper triangle and upper quadrilateral will be empty, and the bottom rectangle will be the entire grid. On each step, we can emit the first element of each row in the upper quadrilateral (essentially moving the slanted line over by one), then add one new row from the bottom rectangle to the upper quadrilateral (essentially moving the horizontal line down by one).
diagonal :: [[a]] -> [a]
diagonal = go [] where
go upper lower = [h | h:_ <- upper] ++ case lower of
[] -> concat (transpose upper')
row:lower' -> go (row:upper') lower'
where upper' = [t | _:t <- upper]
Although this looks a bit more complicated, it is significantly more efficient. It also handles the bounds checking that we punted on in the simpler version.
But you shouldn't write all this code yourself, of course! Instead, you should use the universe package. In Data.Universe.Helpers
, there is (+*+)
, which packages together the above cartesian2d
and diagonal
functions to give just the Cartesian product operation:
Data.Universe.Helpers> "abcd" +*+ [1..4]
[('a',1),('a',2),('b',1),('a',3),('b',2),('c',1),('a',4),('b',3),('c',2),('d',1),('b',4),('c',3),('d',2),('c',4),('d',3),('d',4)]
You can also see the diagonals themselves if that structure becomes useful:
Data.Universe.Helpers> mapM_ print . diagonals $ cartesian2d "abcd" [1..4]
[('a',1)]
[('a',2),('b',1)]
[('a',3),('b',2),('c',1)]
[('a',4),('b',3),('c',2),('d',1)]
[('b',4),('c',3),('d',2)]
[('c',4),('d',3)]
[('d',4)]
If you have many lists to product together, iterating (+*+)
can unfairly bias certain lists; you can use choices :: [[a]] -> [[a]]
for your n-dimensional Cartesian product needs.