I'm trying to conduct a supervised machine-learning experiment using the SelectKBest
feature of scikit-learn, but I'm not sure how to create a new dataframe after finding the best features:
Let's assume I would like to conduct the experiment selecting 5 best features:
from sklearn.feature_selection import SelectKBest, f_classif
select_k_best_classifier = SelectKBest(score_func=f_classif, k=5).fit_transform(features_dataframe, targeted_class)
Now, if I add the line:
import pandas as pd
dataframe = pd.DataFrame(select_k_best_classifier)
I receive a new dataframe without feature names (only index starting from 0 to 4), but I want to create a dataframe with the new selected features, in a way like this:
dataframe = pd.DataFrame(fit_transofrmed_features, columns=features_names)
My question is how to create the features_names
list?
I know that I should use:
select_k_best_classifier.get_support()
Which returns an array of boolean values, where true values indices represent the column that should be selected in the original dataframe.
How should I use this boolean array with the array of all features names I can get via the method feature_names = list(features_dataframe.columns.values)
?