how to filter out a null value from spark dataframe
Asked Answered
C

12

86

I created a dataframe in spark with the following schema:

root
 |-- user_id: long (nullable = false)
 |-- event_id: long (nullable = false)
 |-- invited: integer (nullable = false)
 |-- day_diff: long (nullable = true)
 |-- interested: integer (nullable = false)
 |-- event_owner: long (nullable = false)
 |-- friend_id: long (nullable = false)

And the data is shown below:

+----------+----------+-------+--------+----------+-----------+---------+
|   user_id|  event_id|invited|day_diff|interested|event_owner|friend_id|
+----------+----------+-------+--------+----------+-----------+---------+
|   4236494| 110357109|      0|      -1|         0|  937597069|     null|
|  78065188| 498404626|      0|       0|         0| 2904922087|     null|
| 282487230|2520855981|      0|      28|         0| 3749735525|     null|
| 335269852|1641491432|      0|       2|         0| 1490350911|     null|
| 437050836|1238456614|      0|       2|         0|  991277599|     null|
| 447244169|2095085551|      0|      -1|         0| 1579858878|     null|
| 516353916|1076364848|      0|       3|         1| 3597645735|     null|
| 528218683|1151525474|      0|       1|         0| 3433080956|     null|
| 531967718|3632072502|      0|       1|         0| 3863085861|     null|
| 627948360|2823119321|      0|       0|         0| 4092665803|     null|
| 811791433|3513954032|      0|       2|         0|  415464198|     null|
| 830686203|  99027353|      0|       0|         0| 3549822604|     null|
|1008893291|1115453150|      0|       2|         0| 2245155244|     null|
|1239364869|2824096896|      0|       2|         1| 2579294650|     null|
|1287950172|1076364848|      0|       0|         0| 3597645735|     null|
|1345896548|2658555390|      0|       1|         0| 2025118823|     null|
|1354205322|2564682277|      0|       3|         0| 2563033185|     null|
|1408344828|1255629030|      0|      -1|         1|  804901063|     null|
|1452633375|1334001859|      0|       4|         0| 1488588320|     null|
|1625052108|3297535757|      0|       3|         0| 1972598895|     null|
+----------+----------+-------+--------+----------+-----------+---------+

I want to filter out the rows have null values in the field of "friend_id".

scala> val aaa = test.filter("friend_id is null")

scala> aaa.count

I got :res52: Long = 0 which is obvious not right. What is the right way to get it?

One more question, I want to replace the values in the friend_id field. I want to replace null with 0 and 1 for any other value except null. The code I can figure out is:

val aaa = train_friend_join.select($"user_id", $"event_id", $"invited", $"day_diff", $"interested", $"event_owner", ($"friend_id" != null)?1:0)

This code also doesn't work. Can anyone tell me how can I fix it? Thanks

Collado answered 27/9, 2016 at 14:46 Comment(3)
friend_id: long (nullable = false) ?? how come you have nulls? are they really nulls or text ?Exudation
where are you reading the data from ?Alsup
Hi Zahiro Mor, the null values are from a left outer join previous step which I didn't present here. Sorry about thatCollado
C
90

Let's say you have this data setup (so that results are reproducible):

// declaring data types
case class Company(cName: String, cId: String, details: String)
case class Employee(name: String, id: String, email: String, company: Company)

// setting up example data
val e1 = Employee("n1", null, "[email protected]", Company("c1", "1", "d1"))
val e2 = Employee("n2", "2", "[email protected]", Company("c1", "1", "d1"))
val e3 = Employee("n3", "3", "[email protected]", Company("c1", "1", "d1"))
val e4 = Employee("n4", "4", "[email protected]", Company("c2", "2", "d2"))
val e5 = Employee("n5", null, "[email protected]", Company("c2", "2", "d2"))
val e6 = Employee("n6", "6", "[email protected]", Company("c2", "2", "d2"))
val e7 = Employee("n7", "7", "[email protected]", Company("c3", "3", "d3"))
val e8 = Employee("n8", "8", "[email protected]", Company("c3", "3", "d3"))
val employees = Seq(e1, e2, e3, e4, e5, e6, e7, e8)
val df = sc.parallelize(employees).toDF

Data is:

+----+----+---------+---------+
|name|  id|    email|  company|
+----+----+---------+---------+
|  n1|null|[email protected]|[c1,1,d1]|
|  n2|   2|[email protected]|[c1,1,d1]|
|  n3|   3|[email protected]|[c1,1,d1]|
|  n4|   4|[email protected]|[c2,2,d2]|
|  n5|null|[email protected]|[c2,2,d2]|
|  n6|   6|[email protected]|[c2,2,d2]|
|  n7|   7|[email protected]|[c3,3,d3]|
|  n8|   8|[email protected]|[c3,3,d3]|
+----+----+---------+---------+

Now to filter employees with null ids, you will do --

df.filter("id is null").show

which will correctly show you following:

+----+----+---------+---------+
|name|  id|    email|  company|
+----+----+---------+---------+
|  n1|null|[email protected]|[c1,1,d1]|
|  n5|null|[email protected]|[c2,2,d2]|
+----+----+---------+---------+

Coming to the second part of your question, you can replace the null ids with 0 and other values with 1 with this --

df.withColumn("id", when($"id".isNull, 0).otherwise(1)).show

This results in:

+----+---+---------+---------+
|name| id|    email|  company|
+----+---+---------+---------+
|  n1|  0|[email protected]|[c1,1,d1]|
|  n2|  1|[email protected]|[c1,1,d1]|
|  n3|  1|[email protected]|[c1,1,d1]|
|  n4|  1|[email protected]|[c2,2,d2]|
|  n5|  0|[email protected]|[c2,2,d2]|
|  n6|  1|[email protected]|[c2,2,d2]|
|  n7|  1|[email protected]|[c3,3,d3]|
|  n8|  1|[email protected]|[c3,3,d3]|
+----+---+---------+---------+
Charcuterie answered 27/9, 2016 at 15:30 Comment(3)
can you please provide details about spark version.Azeotrope
Not sure about the exact version. This was a year ago. But I think 2.0Charcuterie
Works with Spark 2.4.0Inductive
U
65

Or like df.filter($"friend_id".isNotNull)

Unloosen answered 8/12, 2016 at 18:44 Comment(0)
I
27
df.where(df.col("friend_id").isNull)
Immigrate answered 27/9, 2016 at 14:53 Comment(0)
T
22

There are two ways to do it: creating filter condition 1) Manually 2) Dynamically.

Sample DataFrame:

val df = spark.createDataFrame(Seq(
  (0, "a1", "b1", "c1", "d1"),
  (1, "a2", "b2", "c2", "d2"),
  (2, "a3", "b3", null, "d3"),
  (3, "a4", null, "c4", "d4"),
  (4, null, "b5", "c5", "d5")
)).toDF("id", "col1", "col2", "col3", "col4")

+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
|  0|  a1|  b1|  c1|  d1|
|  1|  a2|  b2|  c2|  d2|
|  2|  a3|  b3|null|  d3|
|  3|  a4|null|  c4|  d4|
|  4|null|  b5|  c5|  d5|
+---+----+----+----+----+

1) Creating filter condition manually i.e. using DataFrame where or filter function

df.filter(col("col1").isNotNull && col("col2").isNotNull).show

or

df.where("col1 is not null and col2 is not null").show

Result:

+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
|  0|  a1|  b1|  c1|  d1|
|  1|  a2|  b2|  c2|  d2|
|  2|  a3|  b3|null|  d3|
+---+----+----+----+----+

2) Creating filter condition dynamically: This is useful when we don't want any column to have null value and there are large number of columns, which is mostly the case.

To create the filter condition manually in these cases will waste a lot of time. In below code we are including all columns dynamically using map and reduce function on DataFrame columns:

val filterCond = df.columns.map(x=>col(x).isNotNull).reduce(_ && _)

How filterCond looks:

filterCond: org.apache.spark.sql.Column = (((((id IS NOT NULL) AND (col1 IS NOT NULL)) AND (col2 IS NOT NULL)) AND (col3 IS NOT NULL)) AND (col4 IS NOT NULL))

Filtering:

val filteredDf = df.filter(filterCond)

Result:

+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
|  0|  a1|  b1|  c1|  d1|
|  1|  a2|  b2|  c2|  d2|
+---+----+----+----+----+
Tallis answered 9/1, 2018 at 11:5 Comment(1)
Very nice example !Trabue
H
20

A good solution for me was to drop the rows with any null values:

Dataset<Row> filtered = df.filter(row => !row.anyNull);

In case one is interested in the other case, just call row.anyNull. (Spark 2.1.0 using Java API)

Halliehallman answered 20/3, 2017 at 10:35 Comment(0)
T
6

The following lines work well:

test.filter("friend_id is not null")
Troyes answered 29/6, 2020 at 11:33 Comment(0)
V
2

From the hint from Michael Kopaniov, below works

df.where(df("id").isNotNull).show
Visitant answered 7/12, 2016 at 8:15 Comment(0)
G
2

Here is a solution for spark in Java. To select data rows containing nulls. When you have Dataset data, you do:

Dataset<Row> containingNulls =  data.where(data.col("COLUMN_NAME").isNull())

To filter out data without nulls you do:

Dataset<Row> withoutNulls = data.where(data.col("COLUMN_NAME").isNotNull())

Often dataframes contain columns of type String where instead of nulls we have empty strings like "". To filter out such data as well we do:

Dataset<Row> withoutNullsAndEmpty = data.where(data.col("COLUMN_NAME").isNotNull().and(data.col("COLUMN_NAME").notEqual("")))
Gey answered 29/12, 2017 at 14:55 Comment(0)
K
2

for the first question, it is correct you are filtering out nulls and hence count is zero.

for the second replacing: use like below:

val options = Map("path" -> "...\\ex.csv", "header" -> "true")
val dfNull = spark.sqlContext.load("com.databricks.spark.csv", options)

scala> dfNull.show

+----------+----------+-------+--------+----------+-----------+---------+
|   user_id|  event_id|invited|day_diff|interested|event_owner|friend_id|
+----------+----------+-------+--------+----------+-----------+---------+
|   4236494| 110357109|      0|      -1|         0|  937597069|     null|
|  78065188| 498404626|      0|       0|         0| 2904922087|     null|
| 282487230|2520855981|      0|      28|         0| 3749735525|     null|
| 335269852|1641491432|      0|       2|         0| 1490350911|     null|
| 437050836|1238456614|      0|       2|         0|  991277599|     null|
| 447244169|2095085551|      0|      -1|         0| 1579858878|        a|
| 516353916|1076364848|      0|       3|         1| 3597645735|        b|
| 528218683|1151525474|      0|       1|         0| 3433080956|        c|
| 531967718|3632072502|      0|       1|         0| 3863085861|     null|
| 627948360|2823119321|      0|       0|         0| 4092665803|     null|
| 811791433|3513954032|      0|       2|         0|  415464198|     null|
| 830686203|  99027353|      0|       0|         0| 3549822604|     null|
|1008893291|1115453150|      0|       2|         0| 2245155244|     null|
|1239364869|2824096896|      0|       2|         1| 2579294650|        d|
|1287950172|1076364848|      0|       0|         0| 3597645735|     null|
|1345896548|2658555390|      0|       1|         0| 2025118823|     null|
|1354205322|2564682277|      0|       3|         0| 2563033185|     null|
|1408344828|1255629030|      0|      -1|         1|  804901063|     null|
|1452633375|1334001859|      0|       4|         0| 1488588320|     null|
|1625052108|3297535757|      0|       3|         0| 1972598895|     null|
+----------+----------+-------+--------+----------+-----------+---------+

dfNull.withColumn("friend_idTmp", when($"friend_id".isNull, "1").otherwise("0")).drop($"friend_id").withColumnRenamed("friend_idTmp", "friend_id").show

+----------+----------+-------+--------+----------+-----------+---------+
|   user_id|  event_id|invited|day_diff|interested|event_owner|friend_id|
+----------+----------+-------+--------+----------+-----------+---------+
|   4236494| 110357109|      0|      -1|         0|  937597069|        1|
|  78065188| 498404626|      0|       0|         0| 2904922087|        1|
| 282487230|2520855981|      0|      28|         0| 3749735525|        1|
| 335269852|1641491432|      0|       2|         0| 1490350911|        1|
| 437050836|1238456614|      0|       2|         0|  991277599|        1|
| 447244169|2095085551|      0|      -1|         0| 1579858878|        0|
| 516353916|1076364848|      0|       3|         1| 3597645735|        0|
| 528218683|1151525474|      0|       1|         0| 3433080956|        0|
| 531967718|3632072502|      0|       1|         0| 3863085861|        1|
| 627948360|2823119321|      0|       0|         0| 4092665803|        1|
| 811791433|3513954032|      0|       2|         0|  415464198|        1|
| 830686203|  99027353|      0|       0|         0| 3549822604|        1|
|1008893291|1115453150|      0|       2|         0| 2245155244|        1|
|1239364869|2824096896|      0|       2|         1| 2579294650|        0|
|1287950172|1076364848|      0|       0|         0| 3597645735|        1|
|1345896548|2658555390|      0|       1|         0| 2025118823|        1|
|1354205322|2564682277|      0|       3|         0| 2563033185|        1|
|1408344828|1255629030|      0|      -1|         1|  804901063|        1|
|1452633375|1334001859|      0|       4|         0| 1488588320|        1|
|1625052108|3297535757|      0|       3|         0| 1972598895|        1|
+----------+----------+-------+--------+----------+-----------+---------+
Kazan answered 10/10, 2018 at 15:45 Comment(0)
S
2

Another easy way to filter out null values from multiple columns in spark dataframe. Please pay attention there is AND between columns.

df.filter(" COALESCE(col1, col2, col3, col4, col5, col6) IS NOT NULL")

If you need to filter out rows that contain any null (OR connected) please use

df.na.drop()
Semifinalist answered 13/1, 2020 at 14:18 Comment(0)
F
2
val df = Seq(
  ("1001", "1007"),
  ("1002", null),
  ("1003", "1005"),
  (null, "1006")
).toDF("user_id", "friend_id")

Data is:

+-------+---------+
|user_id|friend_id|
+-------+---------+
|   1001|     1007|
|   1002|     null|
|   1003|     1005|
|   null|     1006|
+-------+---------+

Drop rows containing any null or NaN values in the specified columns of the Seq:

df.na.drop(Seq("friend_id"))
  .show()

Output:

+-------+---------+
|user_id|friend_id|
+-------+---------+
|   1001|     1007|
|   1003|     1005|
|   null|     1006|
+-------+---------+

If do not specify columns, drop row as long as any column of a row contains null or NaN values:

df.na.drop()
  .show()

Output:

+-------+---------+
|user_id|friend_id|
+-------+---------+
|   1001|     1007|
|   1003|     1005|
+-------+---------+
Freemason answered 16/7, 2020 at 3:58 Comment(0)
C
0

I use the following code to solve my question. It works. But as we all know, I work around a country's mile to solve it. So, is there a short cut for that? Thanks

def filter_null(field : Any) : Int = field match {
    case null => 0
    case _    => 1
}

val test = train_event_join.join(
    user_friends_pair,
    train_event_join("user_id") === user_friends_pair("user_id") &&
    train_event_join("event_owner") === user_friends_pair("friend_id"),
    "left"
).select(
    train_event_join("user_id"),
    train_event_join("event_id"),
    train_event_join("invited"),
    train_event_join("day_diff"),
    train_event_join("interested"),
    train_event_join("event_owner"),
    user_friends_pair("friend_id")
).rdd.map{
    line => (
        line(0).toString.toLong,
        line(1).toString.toLong,
        line(2).toString.toLong,
        line(3).toString.toLong,
        line(4).toString.toLong,
        line(5).toString.toLong,
        filter_null(line(6))
        )
    }.toDF("user_id", "event_id", "invited", "day_diff", "interested", "event_owner", "creator_is_friend")
Collado answered 27/9, 2016 at 15:27 Comment(3)
You don't need to convert to intermediate rdd and then back to dataframe just to replace nulls. Please see my answer for analogous example.Charcuterie
Thank you, Sachin Tyagi. I use this code: val aaa = test.filter("friend_id is null"). But I cannot filter out any rows with null values in the friend_id field. I compared your code and my code. The friend_id type is long. Can this one be the reason we got different results?Collado
Hi, I checked with the long as well and it works same (as expected). Can you please double check your code. Or paste an end-to-end reproducible snippet that can be tested here as well?Charcuterie

© 2022 - 2024 — McMap. All rights reserved.