What's difference between shadowing and overriding a method in C#?
Well inheritance...
suppose you have this classes:
class A {
public int Foo(){ return 5;}
public virtual int Bar(){return 5;}
}
class B : A{
public new int Foo() { return 1;} //shadow
public override int Bar() {return 1;} //override
}
then when you call this:
A clA = new A();
B clB = new B();
Console.WriteLine(clA.Foo()); // output 5
Console.WriteLine(clA.Bar()); // output 5
Console.WriteLine(clB.Foo()); // output 1
Console.WriteLine(clB.Bar()); // output 1
//now let's cast B to an A class
Console.WriteLine(((A)clB).Foo()); // output 5 <<<-- shadow
Console.WriteLine(((A)clB).Bar()); // output 1
Suppose you have a base class and you use the base class in all your code instead of the inherited classes, and you use shadow, it will return the values the base class returns instead of following the inheritance tree of the real type of the object.
Hope I'm making sense :)
warning CS0108: 'B.Foo()' hides inherited member 'A.Foo()'. Use the new keyword if hiding was intended.
–
Cavanagh Shadowing is actually VB parlance for what we would refer to as hiding in C#.
Often hiding (shadowing in VB) and overriding are shown as in answer by Stormenet.
A virtual method is shown to be overridden by a sub-class and calls to that method even on the super-class type or from inside code of the super-class will call the replacement implementation from the sub-class.
Then a concrete method is shown (one not marked as virtual or abstract) being hidden by using the new
keyword when defining a method with an identical signature on the sub-class. In this case when the method is called on the super-class type the original implementation is used, the new implementation is only available on the sub-class.
However what is often missed is that it is also possible to hide a virtual method.
class A
{
public virtual void DoStuff() { // original implementation }
}
class B : A
{
public new void DoStuff() { //new implementation }
}
B b = new B();
A a = b;
b.DoStuff(); //calls new implementation
a.DoStuff(); //calls original implementation.
Note in the above example DoStuff becomes concrete and can not be overriden. However it is also possible to use both the virtual
and new
keywords together.
class A
{
public virtual void DoStuff() { // original implementation }
}
class B : A
{
public new virtual void DoStuff() { //new implementation }
}
class C : B
{
public override void DoStuff() { //replacement implementation }
}
C c = new C();
B b = c;
A a = b;
c.DoStuff(); //calls replacement implementation
b.DoStuff(); //calls replacement implementation
a.DoStuff(); //calls original implementation.
Note that despite all the methods involved being virtual, the override on C does not affect the virtual method on A because of the use of new
in B hides the A implementation.
Edit: Its been noted in the comments to this answer that the above may be dangerous or at least not particularly useful. I would say yes it can be dangerous and would be out there if it were at all useful.
In particular you could get into all sorts of trouble if you also change the accessability modifiers. For example:-
public class Foo
{
internal Foo() { }
protected virtual string Thing() { return "foo"; }
}
public class Bar : Foo
{
internal new string Thing() { return "bar"; }
}
To an external inheritor of Bar
, Foo
's implementation of Thing() remains accesible and overridable. All legal and explainable according to .NET type rules neverless quite unintuative.
I've posted this answer to deepen an understanding of how things work not as a suggestion of techniques that can be used freely.
I think the main difference is that with shadowing, you're essentially reusing the name, and just ignoring the superclass use. With overriding, you're changing the implementation, but not the accessibility and signature (e.g. parameter types and return). See http://www.geekinterview.com/question_details/19331 .
Shadowing is a VB.NET concept. In C#, Shadowing is known as Hiding. It hides the derived class method. It is accomplished using the ‘new’ keyword.
Override keyword is used to provide a completely new implementation of a base class method (which is marked ‘Virtual’) in the derived class.
The answers above do not describe how to shadow/hide a base class' constructor. For completeness adding that special case here.
Say if you want to wrap ApplicationException
in your own class MyApplicationException
here is the syntax....
public class MyApplicationException : ApplicationException
{
public MyApplicationException(string message) : base(message)
{
// NOOP
} // constructor
public MyApplicationException(string message, Exception innerException) : base(message, innerException)
{
// NOOP
} // constructor
} // class MyApplicationException
Basically if you have something like below,
Class A
{
}
Class B:A
{
}
A a = new B();
Any method you call on the object 'a' will be made on the type of 'a'(Here the type is 'A') But if you implement the same method in class B that is already present in Class A, the compiler will give you a warning to use a "New" keyword. If you use "New", the warning will disappear. Other than this there is no difference between using "New" or not using it in the inherited class.
In some situations you may need to call a method of the reference class the particular instance holds at that moment instead of calling a method on the object type. In the above case the reference it holds is 'B', but the type is 'A'. So if you want the method call should happen on 'B', then you use Virtual and override to achieve this.
Hope this helps...
Daniel Sandeep.
If there is a case in which you cannot alter the contents of a class, let's say A
, but you want to use its some methods along with you have a method which name is common, you can use your own method implementation by the new
keyword.
The crux point is to use it that both the reference and object must be of the same type.
class A
{
public void Test()
{
Console.WriteLine("base");
}
}
class B : A
{
public new void Test()
{
Console.WriteLine("sub");
}
public static void Main(string[] args)
{
A a = new A();
B aa = new B();
a.Test();
aa.Test();
}
}
© 2022 - 2024 — McMap. All rights reserved.