You might see the difference, if you check 3 different use cases of lambda:
- Capturing an argument by value
- Capturing an argument by value with 'mutable' keyword
- Capturing an argument by reference
case 1:
When you capture an argument by value, a few things happen:
- You are not allowed to modify the argument inside the lambda
- The value of the argument remains the same, whenever the lambda is
called, not matter what will be the argument value at the time the lambda is called.
so for example:
{
int x = 100;
auto lambda1 = [x](){
// x += 2; // compile time error. not allowed
// to modify an argument that is captured by value
return x * 2;
};
cout << lambda1() << endl; // 100 * 2 = 200
cout << "x: " << x << endl; // 100
x = 300;
cout << lambda1() << endl; // in the lambda, x remain 100. 100 * 2 = 200
cout << "x: " << x << endl; // 300
}
Output:
200
x: 100
200
x: 300
case 2:
Here, when you capture an argument by value and use the 'mutable' keyword, similar to the first case, you create a "copy" of this argument. This "copy" lives in the "world" of the lambda, but now, you can actually modify the argument within the lambda-world, so its value is changed, and saved and it can be referred to, in the future calls of this lambda. Again, the outside "life" of the argument might be totally different (value wise):
{
int x = 100;
auto lambda2 = [x]() mutable {
x += 2; // when capture by value, modify the argument is
// allowed when mutable is used.
return x;
};
cout << lambda2() << endl; // 100 + 2 = 102
cout << "x: " << x << endl; // in the outside world - x remains 100
x = 200;
cout << lambda2() << endl; // 104, as the 102 is saved in the lambda world.
cout << "x: " << x << endl; // 200
}
Output:
102
x: 100
104
x: 200
case 3:
This is the easiest case, as no more 2 lives of x. Now there is only one value for x and it's shared between the outside world and the lambda world.
{
int x = 100;
auto lambda3 = [&x]() mutable {
x += 10; // modify the argument, is allowed when mutable is used.
return x;
};
cout << lambda3() << endl; // 110
cout << "x: " << x << endl; // 110
x = 400;
cout << lambda3() << endl; // 410.
cout << "x: " << x << endl; // 410
}
Output:
110
x: 110
410
x: 410
const
by default! – Doorbellconst
by default. – Thiazine