Another way to look at it: the precise meaning of a const pointer is that you will not be able to make changes to the pointed-to object that would be visible via that or any other pointer or reference to the same object. But when an object destructs, all other pointers to the address previously occupied by the now-deleted object are no longer pointers to that object. They store the same address, but that address is no longer the address of any object (in fact it may soon be reused as the address of a different object).
This distinction would be more obvious if pointers in C++ behaved like weak references, i.e. as soon as the object is destroyed, all extant pointers to it would immediately be set to 0
. (That's the kind of thing considered to be too costly at runtime to impose on all C++ programs, and in fact it is impossible to make it entirely reliable.)
UPDATE: Reading this back nine years later, it's lawyer-ish. I now find your original reaction understandable. To disallow mutation but allow destruction is clearly problematic. The implied contract of const pointers/references is that their existence will act as a block on destruction of the target object, a.k.a. automatic garbage collection.
The usual solution to this is to use almost any other language instead.