I am running a few tests on the storage formats available with Hive and using Parquet and ORC as major options. I included ORC once with default compression and once with Snappy.
I have read many a documents that state Parquet to be better in time/space complexity as compared to ORC but my tests are opposite to the documents I went through.
Follows some details of my data.
Table A- Text File Format- 2.5GB
Table B - ORC - 652MB
Table C - ORC with Snappy - 802MB
Table D - Parquet - 1.9 GB
Parquet was worst as far as compression for my table is concerned.
My tests with the above tables yielded following results.
Row count operation
Text Format Cumulative CPU - 123.33 sec
Parquet Format Cumulative CPU - 204.92 sec
ORC Format Cumulative CPU - 119.99 sec
ORC with SNAPPY Cumulative CPU - 107.05 sec
Sum of a column operation
Text Format Cumulative CPU - 127.85 sec
Parquet Format Cumulative CPU - 255.2 sec
ORC Format Cumulative CPU - 120.48 sec
ORC with SNAPPY Cumulative CPU - 98.27 sec
Average of a column operation
Text Format Cumulative CPU - 128.79 sec
Parquet Format Cumulative CPU - 211.73 sec
ORC Format Cumulative CPU - 165.5 sec
ORC with SNAPPY Cumulative CPU - 135.45 sec
Selecting 4 columns from a given range using where clause
Text Format Cumulative CPU - 72.48 sec
Parquet Format Cumulative CPU - 136.4 sec
ORC Format Cumulative CPU - 96.63 sec
ORC with SNAPPY Cumulative CPU - 82.05 sec
Does that mean ORC is faster then Parquet? Or there is something that I can do to make it work better with query response time and compression ratio?
Thanks!