I ran into this same issue awhile ago, and this is the only solution I could come up with:
(Note that this works with matplotlib 1.3.0, but not 1.1.0)
from mpl_toolkits.basemap import Basemap
import numpy.ma as ma
import numpy as np
m = Basemap() #Define your map projection here
Assuming var is your variable of interest (NxMx3),lats is (N)x(M) and lons is (N)x(M):
We need to convert pixel center lat/lons to pixel corner lat/lons (N+1)x(M+1)
cornerLats=getCorners(lat);cornerLons=getCorners(lon)
Get coordinate corners
xCorners,yCorners=m(cornerLats,cornerLons,inverse=True)
Mask the data that is invalid
var=ma.masked_where(np.isnan(var),var)
We need a flattened tuple(N*M,3) to pass to pcolormesh
colorTuple=tuple(np.array([var[:,:,0].flatten(),var[:,:,1].flatten(),var[:,:,2].flatten()]).transpose().tolist())
Setting a larger linewidth will result in more edge distortion, and a
smaller linewidth will result in a screwed up image for some reason.
m.pcolormesh(xCorners,yCorners,var[:,:,0],color=colorTuple,clip_on=True,linewidth=0.05)
def getCorners(centers):
one = centers[:-1,:]
two = centers[1:,:]
d1 = (two - one) / 2.
one = one - d1
two = two + d1
stepOne = np.zeros((centers.shape[0] + 1,centers.shape[1]))
stepOne[:-2,:] = one
stepOne[-2:,:] = two[-2:,:]
one = stepOne[:,:-1]
two = stepOne[:,1:]
d2 = (two - one) / 2.
one = one - d2
two = two + d2
stepTwo = np.zeros((centers.shape[0] + 1,centers.shape[1] + 1))
stepTwo[:,:-2] = one
stepTwo[:,-2:] = two[:,-2:]
return stepTwo