Using np.ndarrays
as ctypes
arguments
The preferable approach is using ndpointer
, as mentioned in the numpy-docs.
This approach is more flexible than using, for example,
POINTER(c_double), since several restrictions can be specified, which
are verified upon calling the ctypes function. These include data
type, number of dimensions, shape and flags. If a given array does not
satisfy the specified restrictions, a TypeError is raised.
Minimal, Reproducible Example
Calling memcpy from python. Eventually the filename of the standard C-library libc.so.6
needs to be adjusted.
import ctypes
import numpy as np
n_bytes_f64 = 8
nrows = 2
ncols = 5
clib = ctypes.cdll.LoadLibrary("libc.so.6")
clib.memcpy.argtypes = [
np.ctypeslib.ndpointer(dtype=np.float64, ndim=2, flags='C_CONTIGUOUS'),
np.ctypeslib.ndpointer(dtype=np.float64, ndim=1, flags='C_CONTIGUOUS'),
ctypes.c_size_t]
clib.memcpy.restype = ctypes.c_void_p
arr_from = np.arange(nrows * ncols).astype(np.float64)
arr_to = np.empty(shape=(nrows, ncols), dtype=np.float64)
print('arr_from:', arr_from)
print('arr_to:', arr_to)
print('\ncalling clib.memcpy ...\n')
clib.memcpy(arr_to, arr_from, nrows * ncols * n_bytes_f64)
print('arr_from:', arr_from)
print('arr_to:', arr_to)
Output
arr_from: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
arr_to: [[0.0e+000 4.9e-324 9.9e-324 1.5e-323 2.0e-323]
[2.5e-323 3.0e-323 3.5e-323 4.0e-323 4.4e-323]]
calling clib.memcpy ...
arr_from: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
arr_to: [[0. 1. 2. 3. 4.]
[5. 6. 7. 8. 9.]]
If you modify the ndim=1/2
arguments of ndpointer
to be inconsistent with the dimensions of arr_from/arr_to
, the code fails with an ArgumentError
.
As the title of this question is quite general, ...
Constructing a np.ndarray
from a ctypes.c_void_p
result
Minimal, Reproducible Example
In the following example, some memory is allocated by malloc and filled with 0s by memset. Then a numpy array is constructed, to access this memory. Of course the occur some ownership issues, as python will not free memory, which was allocated in c. To avoid memory leaks, one has to free the allocated memory again by ctypes. The copy method can be used for the np.ndarray
to acquire ownership.
import ctypes
import numpy as np
n_bytes_int = 4
size = 7
clib = ctypes.cdll.LoadLibrary("libc.so.6")
clib.malloc.argtypes = [ctypes.c_size_t]
clib.malloc.restype = ctypes.c_void_p
clib.memset.argtypes = [
ctypes.c_void_p,
ctypes.c_int,
ctypes.c_size_t]
clib.memset.restype = np.ctypeslib.ndpointer(
dtype=np.int32, ndim=1, flags='C_CONTIGUOUS')
clib.free.argtypes = [ctypes.c_void_p]
clib.free.restype = ctypes.c_void_p
pntr = clib.malloc(size * n_bytes_int)
ndpntr = clib.memset(pntr, 0, size * n_bytes_int)
print(type(ndpntr))
ctypes_pntr = ctypes.cast(ndpntr, ctypes.POINTER(ctypes.c_int))
print(type(ctypes_pntr))
print()
arr_noowner = np.ctypeslib.as_array(ctypes_pntr, shape=(size,))
arr_owner = np.ctypeslib.as_array(ctypes_pntr, shape=(size,)).copy()
# arr_owner = arr_noowner.copy()
print('arr_noowner (at {:}): {:}'.format(arr_noowner.ctypes.data, arr_noowner))
print('arr_owner (at {:}): {:}'.format(arr_owner.ctypes.data, arr_owner))
print('\nfree allocated memory again ...\n')
_ = clib.free(pntr)
print('arr_noowner (at {:}): {:}'.format(arr_noowner.ctypes.data, arr_noowner))
print('arr_owner (at {:}): {:}'.format(arr_owner.ctypes.data, arr_owner))
print('\njust for fun: free some python-memory ...\n')
_ = clib.free(arr_owner.ctypes.data_as(ctypes.c_void_p))
print('arr_noowner (at {:}): {:}'.format(arr_noowner.ctypes.data, arr_noowner))
print('arr_owner (at {:}): {:}'.format(arr_owner.ctypes.data, arr_owner))
Output
<class 'numpy.ctypeslib.ndpointer_<i4_1d_C_CONTIGUOUS'>
<class '__main__.LP_c_int'>
arr_noowner (at 104719884831376): [0 0 0 0 0 0 0]
arr_owner (at 104719884827744): [0 0 0 0 0 0 0]
free allocated memory again ...
arr_noowner (at 104719884831376): [ -7687536 24381 -28516336 24381 0 0 0]
arr_owner (at 104719884827744): [0 0 0 0 0 0 0]
just for fun: free some python-memory ...
arr_noowner (at 104719884831376): [ -7687536 24381 -28516336 24381 0 0 0]
arr_owner (at 104719884827744): [ -7779696 24381 -28516336 24381 0 0 0]
ctype
array. Any recommendations? – Bolicknumpy.ctypeslib.ndpointer
as argument type to the ctypes wrapper of your function. (If this is not clear, just ask...) – Hankypanky