After reading the question, I know the differences between declaration and definition. So does it mean definition equals declaration plus initialization?
Declaration
Declaration, generally, refers to the introduction of a new name in the program. For example, you can declare a new function by describing it's "signature":
void xyz();
or declare an incomplete type:
class klass;
struct ztruct;
and last but not least, to declare an object:
int x;
It is described, in the C++ standard, at §3.1/1 as:
A declaration (Clause 7) may introduce one or more names into a translation unit or redeclare names introduced by previous declarations.
Definition
A definition is a definition of a previously declared name (or it can be both definition and declaration). For example:
int x;
void xyz() {...}
class klass {...};
struct ztruct {...};
enum { x, y, z };
Specifically the C++ standard defines it, at §3.1/1, as:
A declaration is a definition unless it declares a function without specifying the function’s body (8.4), it contains the extern specifier (7.1.1) or a linkage-specification25 (7.5) and neither an initializer nor a function- body, it declares a static data member in a class definition (9.2, 9.4), it is a class name declaration (9.1), it is an opaque-enum-declaration (7.2), it is a template-parameter (14.1), it is a parameter-declaration (8.3.5) in a function declarator that is not the declarator of a function-definition, or it is a typedef declaration (7.1.3), an alias-declaration (7.1.3), a using-declaration (7.3.3), a static_assert-declaration (Clause 7), an attribute- declaration (Clause 7), an empty-declaration (Clause 7), or a using-directive (7.3.4).
Initialization
Initialization refers to the "assignment" of a value, at construction time. For a generic object of type T
, it's often in the form:
T x = i;
but in C++ it can be:
T x(i);
or even:
T x {i};
with C++11.
Conclusion
So does it mean definition equals declaration plus initialization?
It depends. On what you are talking about. If you are talking about an object, for example:
int x;
This is a definition without initialization. The following, instead, is a definition with initialization:
int x = 0;
In certain context, it doesn't make sense to talk about "initialization", "definition" and "declaration". If you are talking about a function, for example, initialization does not mean much.
So, the answer is no: definition does not automatically mean declaration plus initialization.
int x;
is a definition as well as a declaration. –
Maidinwaiting So does it mean definition equals declaration plus initialization
. –
Aneroidograph Declaration says "this thing exists somewhere":
int foo(); // function
extern int bar; // variable
struct T
{
static int baz; // static member variable
};
Definition says "this thing exists here; make memory for it":
int foo() {} // function
int bar; // variable
int T::baz; // static member variable
Initialisation is optional at the point of definition for objects, and says "here is the initial value for this thing":
int bar = 0; // variable
int T::baz = 42; // static member variable
Sometimes it's possible at the point of declaration instead:
struct T
{
static int baz = 42;
};
…but that's getting into more complex features.
baz
needs to be const
or constexpr
, otherwise it won't compile), but I think the compiler allows initialization without definition because that value can be used in expressions that can be evaluated at compile time. So if you have something like int x = T::baz;
, the compiler just does search-and-replace on it and the expression becomes int x = 42;
. If you push baz
onto a function call, foo(T::baz);
, then you should allocate memory for it via a definition. –
Cyclostyle For C, at least, per C11 6.7.5:
A declaration specifies the interpretation and attributes of a set of identifiers. A definition of an identifier is a declaration for that identifier that:
for an object, causes storage to be reserved for that object;
for a function, includes the function body;
for an enumeration constant, is the (only) declaration of the identifier;
for a typedef name, is the first (or only) declaration of the identifier.
Per C11 6.7.9.8-10:
An initializer specifies the initial value stored in an object ... if an object that has automatic storage is not initialized explicitly, its value is indeterminate.
So, broadly speaking, a declaration introduces an identifier and provides information about it. For a variable, a definition is a declaration which allocates storage for that variable.
Initialization is the specification of the initial value to be stored in an object, which is not necessarily the same as the first time you explicitly assign a value to it. A variable has a value when you define it, whether or not you explicitly give it a value. If you don't explicitly give it a value, and the variable has automatic storage, it will have an initial value, but that value will be indeterminate. If it has static storage, it will be initialized implicitly depending on the type (e.g. pointer types get initialized to null pointers, arithmetic types get initialized to zero, and so on).
So, if you define an automatic variable without specifying an initial value for it, such as:
int myfunc(void) {
int myvar;
...
You are defining it (and therefore also declaring it, since definitions are declarations), but not initializing it. Therefore, definition does not equal declaration plus initialization.
"So does it mean definition equals declaration plus initialization."
Not necessarily, your declaration might be without any variable being initialized like:
void helloWorld(); //declaration or Prototype.
void helloWorld()
{
std::cout << "Hello World\n";
}
© 2022 - 2024 — McMap. All rights reserved.