Pandas: Subtracting two date columns and the result being an integer
Asked Answered
G

6

104

I have two columns in a Pandas data frame that are dates.

I am looking to subtract one column from another and the result being the difference in numbers of days as an integer.

A peek at the data:

df_test.head(10)
Out[20]: 
  First_Date Second Date
0 2016-02-09  2015-11-19
1 2016-01-06  2015-11-30
2        NaT  2015-12-04
3 2016-01-06  2015-12-08
4        NaT  2015-12-09
5 2016-01-07  2015-12-11
6        NaT  2015-12-12
7        NaT  2015-12-14
8 2016-01-06  2015-12-14
9        NaT  2015-12-15

I have created a new column successfully with the difference:

df_test['Difference'] = df_test['First_Date'].sub(df_test['Second Date'], axis=0)
df_test.head()         
Out[22]: 
  First_Date Second Date  Difference
0 2016-02-09  2015-11-19     82 days
1 2016-01-06  2015-11-30     37 days
2        NaT  2015-12-04         NaT
3 2016-01-06  2015-12-08     29 days
4        NaT  2015-12-09         NaT

However I am unable to get a numeric version of the result:

df_test['Difference'] = df_test[['Difference']].apply(pd.to_numeric)     

df_test.head()
Out[25]: 
  First_Date Second Date    Difference
0 2016-02-09  2015-11-19  7.084800e+15
1 2016-01-06  2015-11-30  3.196800e+15
2        NaT  2015-12-04           NaN
3 2016-01-06  2015-12-08  2.505600e+15
4        NaT  2015-12-09           NaN
Garboil answered 15/6, 2016 at 16:21 Comment(0)
A
183

How about:

df_test['Difference'] = (df_test['First_Date'] - df_test['Second Date']).dt.days

This will return difference as int if there are no missing values(NaT) and float if there is.

Pandas have a rich documentation on Time series / date functionality and Time deltas

Alvita answered 27/10, 2017 at 3:13 Comment(5)
Agree with @AllenWang. This is the superior answer.Buprestid
@ Make that at least 3 suggesting this be the accepted answerSarmentose
This may have changed in recent versions. It works for me using .days now while .dt.days throws an errorTormentor
It appears that it depends on the resulting value. If they are a datetime series then .dt is required. Can you check the results of expression. Is it a DataFrame or a Series? I am still trying to figure out when dt is requiredAlvita
this seems to only work for days, not for weeks or years.Blasien
M
62

You can divide column of dtype timedelta by np.timedelta64(1, 'D'), but output is not int, but float, because NaN values:

df_test['Difference'] = df_test['Difference'] / np.timedelta64(1, 'D')
print (df_test)
  First_Date Second Date  Difference
0 2016-02-09  2015-11-19        82.0
1 2016-01-06  2015-11-30        37.0
2        NaT  2015-12-04         NaN
3 2016-01-06  2015-12-08        29.0
4        NaT  2015-12-09         NaN
5 2016-01-07  2015-12-11        27.0
6        NaT  2015-12-12         NaN
7        NaT  2015-12-14         NaN
8 2016-01-06  2015-12-14        23.0
9        NaT  2015-12-15         NaN

Frequency conversion.

Materialism answered 15/6, 2016 at 16:25 Comment(0)
C
15

You can use datetime module to help here. Also, as a side note, a simple date subtraction should work as below:

import datetime as dt
import numpy as np
import pandas as pd

#Assume we have df_test:
In [222]: df_test
Out[222]: 
   first_date second_date
0  2016-01-31  2015-11-19
1  2016-02-29  2015-11-20
2  2016-03-31  2015-11-21
3  2016-04-30  2015-11-22
4  2016-05-31  2015-11-23
5  2016-06-30  2015-11-24
6         NaT  2015-11-25
7         NaT  2015-11-26
8  2016-01-31  2015-11-27
9         NaT  2015-11-28
10        NaT  2015-11-29
11        NaT  2015-11-30
12 2016-04-30  2015-12-01
13        NaT  2015-12-02
14        NaT  2015-12-03
15 2016-04-30  2015-12-04
16        NaT  2015-12-05
17        NaT  2015-12-06

In [223]: df_test['Difference'] = df_test['first_date'] - df_test['second_date'] 

In [224]: df_test
Out[224]: 
   first_date second_date  Difference
0  2016-01-31  2015-11-19     73 days
1  2016-02-29  2015-11-20    101 days
2  2016-03-31  2015-11-21    131 days
3  2016-04-30  2015-11-22    160 days
4  2016-05-31  2015-11-23    190 days
5  2016-06-30  2015-11-24    219 days
6         NaT  2015-11-25         NaT
7         NaT  2015-11-26         NaT
8  2016-01-31  2015-11-27     65 days
9         NaT  2015-11-28         NaT
10        NaT  2015-11-29         NaT
11        NaT  2015-11-30         NaT
12 2016-04-30  2015-12-01    151 days
13        NaT  2015-12-02         NaT
14        NaT  2015-12-03         NaT
15 2016-04-30  2015-12-04    148 days
16        NaT  2015-12-05         NaT
17        NaT  2015-12-06         NaT

Now, change type to datetime.timedelta, and then use the .days method on valid timedelta objects.

In [226]: df_test['Diffference'] = df_test['Difference'].astype(dt.timedelta).map(lambda x: np.nan if pd.isnull(x) else x.days)

In [227]: df_test
Out[227]: 
   first_date second_date  Difference  Diffference
0  2016-01-31  2015-11-19     73 days           73
1  2016-02-29  2015-11-20    101 days          101
2  2016-03-31  2015-11-21    131 days          131
3  2016-04-30  2015-11-22    160 days          160
4  2016-05-31  2015-11-23    190 days          190
5  2016-06-30  2015-11-24    219 days          219
6         NaT  2015-11-25         NaT          NaN
7         NaT  2015-11-26         NaT          NaN
8  2016-01-31  2015-11-27     65 days           65
9         NaT  2015-11-28         NaT          NaN
10        NaT  2015-11-29         NaT          NaN
11        NaT  2015-11-30         NaT          NaN
12 2016-04-30  2015-12-01    151 days          151
13        NaT  2015-12-02         NaT          NaN
14        NaT  2015-12-03         NaT          NaN
15 2016-04-30  2015-12-04    148 days          148
16        NaT  2015-12-05         NaT          NaN
17        NaT  2015-12-06         NaT          NaN

Hope that helps.

Chalet answered 16/6, 2016 at 2:24 Comment(2)
Yes, it is one possible solution, but I think it is not recommended approach, because output of column Diffference is object and next processing (adding, substraction...) is impossible.Materialism
@jesrael, there are other ways of doing, eg, your solution. However, adding/subtracting is not a problem with NaNs mixed in with int types in a column. They will be automatically be casted to float operations as needed.Chalet
P
1

I feel that the overall answer does not handle if the dates 'wrap' around a year. This would be useful in understanding proximity to a date being accurate by day of year. In order to do these row operations, I did the following. (I had this used in a business setting in renewing customer subscriptions).

def get_date_difference(row, x, y):
    try:
        # Calcuating the smallest date difference between the start and the close date
        # There's some tricky logic in here to calculate for determining date difference
        # the other way around (Dec -> Jan is 1 month rather than 11)

        sub_start_date = int(row[x].strftime('%j')) # day of year (1-366)
        close_date = int(row[y].strftime('%j')) # day of year (1-366)

        later_date_of_year = max(sub_start_date, close_date) 
        earlier_date_of_year = min(sub_start_date, close_date)
        days_diff = later_date_of_year - earlier_date_of_year

# Calculates the difference going across the next year (December -> Jan)
        days_diff_reversed = (365 - later_date_of_year) + earlier_date_of_year
        return min(days_diff, days_diff_reversed)

    except ValueError:
        return None

Then the function could be:

dfAC_Renew['date_difference'] = dfAC_Renew.apply(get_date_difference, x = 'customer_since_date', y = 'renewal_date', axis = 1)
Pushball answered 25/2, 2020 at 19:15 Comment(0)
B
0

Create a vectorized method

def calc_xb_minus_xa(df):
    time_dict = {
        '<Minute>': 'm',
        '<Hour>': 'h',
        '<Day>': 'D',
        '<Week>': 'W',
        '<Month>': 'M',
        '<Year>': 'Y'
    }

    time_delta = df.at[df.index[0], 'end_time'] - df.at[df.index[0], 'open_time']
    offset_base_name = str(to_offset(time_delta).base)
    time_term = time_dict.get(offset_base_name)

    result = (df.end_time - df.open_time) / np.timedelta64(1, time_term)
    return result

Then in your df do:

df['x'] = calc_xb_minus_xa(df)

This will work for minutes, hours, days, weeks, month and Year. open_time and end_time need to change according your df

Besnard answered 15/7, 2020 at 23:42 Comment(0)
E
0

What worked perfect for me is this. I am on Pandas version: 2.0.2.

from datetime import datetime
df['new_col'] = (pd.to_datetime(df['col1'])).sub(pd.to_datetime(df['col2'])).dt.days
Epidermis answered 23/7, 2023 at 18:51 Comment(0)

© 2022 - 2025 — McMap. All rights reserved.