I have the following 3rd order tensors. Both tensors matrices the first tensor containing 100 10x9 matrices and the second containing 100 3x10 matrices (which I have just filled with ones for this example).
My aim is to multiply the matrices as the line up one to one correspondance wise which would result in a tensor with shape: (100, 3, 9)
This can be done with a for loop that just zips up both tensors and then takes the dot of each but I am looking to do this just with numpy operators. So far here are some failed attempts
Attempt 1:
import numpy as np
T1 = np.ones((100, 10, 9))
T2 = np.ones((100, 3, 10))
print T2.dot(T1).shape
Ouput of attempt 1 :
(100, 3, 100, 9)
Which means it tried all possible combinations ... which is not what I am after.
Actually non of the other attempts even compile. I tried using np.tensordot , np.einsum (read here https://jameshensman.wordpress.com/2010/06/14/multiple-matrix-multiplication-in-numpy that it is supposed to do the job but I did not get Einsteins indices correct) also in the same link there is some crazy tensor cube reshaping method that I did not manage to visualize. Any suggestions / ideas-explanations on how to tackle this ?