I am currently trying to implement a convolutional network using Keras 2.1.6 (with TensorFlow as backend) and its ImageDataGenerator
to segment an image using a grayscale mask. I try to use an image as input, and a mask as label. Due to a low amount of training images, and memory constraints I utilize the ImageDataGenerator
class provided in Keras.
However I get this error, after changing the values provided in the Keras example to the ones described later:
File "C:\Users\XXX\Anaconda3\lib\site-packages\keras\engine\training.py", line 2223, in fit_generator
batch_size = x.shape[0]
AttributeError: 'tuple' object has no attribute 'shape'
Which, as far as I know, happens because the generator does generate a tuple, and not an array. This first happened after I changed following parameters from the standard values provided in the Keras example to the following: color_mode='grayscale'
for all mask generators, and class_mode='input'
due to this being recommended for autoencoders.
The Keras example can be found in here.
The dataset I am using consists of 100 images (jpg
) and 100 corresponding grayscale masks (png
) and can be downloaded at this link
The architecture I wanted to implement is an autoencoder/U-Net based network and it is shown in the provided code:
from keras.preprocessing import image
from keras.models import Model
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D
from keras import initializers
image_path =
mask_path =
valid_image_path =
valid_mask_path =
img_size=160
batchsize=10
samplesize = 60
steps = samplesize / batchsize
train_datagen = image.ImageDataGenerator(shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
data_gen_args = dict(rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
seed = 1
image_generator = image_datagen.flow_from_directory(
image_path,
target_size=(img_size, img_size),
class_mode='input',
batch_size = batchsize,
seed=seed)
mask_generator = mask_datagen.flow_from_directory(
mask_path,
target_size=(img_size, img_size),
class_mode='input',
color_mode = 'grayscale',
batch_size = batchsize,
seed=seed)
vimage_generator = image_datagen.flow_from_directory(
valid_image_path,
target_size=(img_size, img_size),
class_mode='input',
batch_size = batchsize,
seed=seed)
vmask_generator = mask_datagen.flow_from_directory(
valid_mask_path,
target_size=(img_size, img_size),
class_mode='input',
color_mode = 'grayscale',
batch_size = batchsize,
seed=seed)
#Model
input_img = Input(shape=(img_size,img_size,3))
c11 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(input_img)
mp1 = MaxPooling2D((2, 2), padding='same')(c11)
c21 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(mp1)
mp2 = MaxPooling2D((2, 2), padding='same')(c21)
c31 = Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(mp2)
encoded = MaxPooling2D((5, 5), padding='same')(c31)
c12 = Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(encoded)
us12 = UpSampling2D((5,5))(c12)
c22 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(us12)
us22 = UpSampling2D((2, 2))(c22)
c32 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(us22)
us32 = UpSampling2D((2, 2))(c32)
decoded = Conv2D(1, (3, 3), activation='softmax', padding='same')(us32)
model = Model(input_img, decoded)
model.compile(loss="mean_squared_error", optimizer=optimizers.Adam(),metrics=["accuracy"])
#model.summary()
#Generators, tr: training, v: validation
trgen = zip(image_generator,mask_generator)
vgen = zip(vimage_generator,vmask_generator)
model.fit_generator(
trgen,
steps_per_epoch= steps,
epochs=5,
validation_data = vgen,
validation_steps=10)
y
data (masks), won't this change the values (e.g., for rotation or shift it may use interpolation to calculate pixel values; other methods may directly change color values). Isn't this a problem, since the values in the mask images correspond to classes? If 0 = house and 1 = dog and you rotate the image, the outcome could be some pixels with value 0.5, or is there something to prevent this? – Intercut