Some pre-programmed models automatically remove linear dependent variables in their regression output (e.g. lm()
) in R
. With the bife
package, this does not seem to be possible. As stated in the package description in CRAN on page 5:
If bife does not converge this is usually a sign of linear dependence between one or more regressors and the fixed effects. In this case, you should carefully inspect your model specification.
Now, suppose the problem at hand involves doing many regressions and one cannot inspect adequately each regression output -- one has to suppose some sort of rule-of-thumb regarding the regressors. What could be some of the alternatives to remove linear dependent regressors more or less automatically and achieve an adequate model specification?
I set a code as an example below:
#sample coding
x=10*rnorm(40)
z=100*rnorm(40)
df1=data.frame(a=rep(c(0,1),times=20), x=x, y=x, z=z, ID=c(1:40), date=1, Region=rep(c(1,2, 3, 4),10))
df2=data.frame(a=c(rep(c(1,0),times=15),rep(c(0,1),times=5)), x=1.4*x+4, y=1.4*x+4, z=1.2*z+5, ID=c(1:40), date=2, Region=rep(c(1,2,3,4),10))
df3=rbind(df1,df2)
df3=rbind(df1,df2)
for(i in 1:4) {
x=df3[df3$Region==i,]
model = bife::bife(a ~ x + y + z | ID, data = x)
results=data.frame(Region=unique(df3$Region))
results$Model = results
if (i==1){
df4=df
next
}
df4=rbind(df4,df)
}
Error: Linear dependent terms detected!
alias
and then remove terms dependent on this.. i.e.alias(object=a~ x + y + z , data=df3)
– Josiejosler