The C++ side has been handled in other answers, but I want to add a remark on the Java side of it. Calling a virtual function from a constructor is a problem in all cases, not just in C++. Basically what the code is trying to do is execute a method on an object that has not yet been created and that is an error.
The two solutions implemented in the different languages differ in trying to make some sense of what your code is trying to do. In C++ the decision is that during construction of a base object, and until construction of the derived object starts, the actual type of the object is base, which means that there won't be dynamic dispatch. That is, the type of the object at any time is that of the constructor being executed[*]. While this is surprising to some (you among others), it provides a sensible solution to the problem.
[*] Conversely the destructor. The type also changes as the most derived constructors complete.
The alternative in Java is that the object is of the final type from the beginning, even before construction has completed. In Java, as you demonstrated, the call will be dispatched to the final overrider (I am using C++ slang here: to the last implementation of the virtual function in the execution chain), and that can cause unwanted behavior. Consider for example this implementation of initialize()
:
public class MyClass extends MyAbstractClass {
final int k1 = 1;
final int k2;
MyClass() {
k2 = 2;
}
void initialize() {
System.out.println( "Constant 1 is " + k1 + " and constant 2 is " + k2 );
}
}
What is the output of the previous program? (Answer at the bottom)
More than just a toy example, consider that MyClass
provides some invariants that are set at construction time and hold for the whole lifetime of the object. Maybe it holds a reference to a logger on which data can be dumped. By looking at the class, you can see that the logger is set in the constructor and assume that it cannot be reset anywhere in the code:
public class MyClass extends MyAbstractClass {
Logger logger;
MyClass() {
logger = new Logger( System.out );
}
void initialize() {
logger.debug( "Starting initialization" );
}
}
You probably see now where this is going. By looking at the implementation of MyClass
there does not seem to be anything wrong at all. logger
is set in the constructor, so it can be used in all methods of the class. Now the problem is that if MyAbstractClass
calls on a virtual function that gets dispatched then the application will crash with a NullPointerException.
By now I hope that you understand and value the C++ decision of not performing dynamic dispatch and thus avoid executing functions on objects that have not yet been fully initialized (or conversely have already been destroyed, if the virtual call is in the destructor).
(Answer: this might depend on the compiler/JVM, but when I tried this long long time ago, the line printed Constant 1 is 1 and constant 2 is 0. If you are happy with that, fine by me, but I found that to be surprising... The reason for the 1/0 in that compiler is that the process of initialization first sets the values that are in the variable definition, and then calls the constructors. This means that the first step of construction would set k1
before calling MyAbstractBase
constructor, that would call initialize()
before MyBase
constructor has run and set the value of the second constant).
initialise
function anyway? That's what constructors are for. – Sodium