There is absolutely no memory leak in your C++ program. The real culprit is memory fragmentation.
Just to be sure(regarding memory leak point), I ran this program on Valgrind, and it did not give any memory leak information in the report.
//Valgrind Report
mantosh@mantosh4u:~/practice$ valgrind ./basic
==3227== HEAP SUMMARY:
==3227== in use at exit: 0 bytes in 0 blocks
==3227== total heap usage: 20,017 allocs, 20,017 frees, 4,021,989,744 bytes allocated
==3227==
==3227== All heap blocks were freed -- no leaks are possible
Please find my response to your query/doubt asked in original question.
The culprit seems to be that after TestMemory(), the application's
virtual memory stays at 827125760 (regardless of number of times I
call it).
Yes, real culprit is hidden fragmentation done during the TestMemory() function.Just to understand the fragmentation, I have taken the snippet from wikipedia
"
when free memory is separated into small blocks and is interspersed by allocated memory. It is a weakness of certain storage allocation algorithms, when they fail to order memory used by programs efficiently. The result is that, although free storage is available, it is effectively unusable because it is divided into pieces that are too small individually to satisfy the demands of the application.
For example, consider a situation wherein a program allocates 3 continuous blocks of memory and then frees the middle block. The memory allocator can use this free block of memory for future allocations. However, it cannot use this block if the memory to be allocated is larger in size than this free block."
The above explains paragraph explains very nicely about memory fragmentation.Some allocation patterns(such as frequent allocation and deal location) would lead to memory fragmentation,but its end impact(.i.e. memory allocation 1.5GBgets failed) would greatly vary on different system as different OS/heap manager has different strategy and implementation.
As an example, your program ran perfectly fine on my machine(Linux) however you have encountered the memory allocation failure.
Regarding your observation on VM size remains constant: VM size seen in task manager is not directly proportional to our memory allocation calls. It mainly depends on the how much bytes is in committed state. When you allocate some dynamic memory(using new/malloc) and you do not write/initialize anything in those memory regions, it would not go committed state and hence VM size would not get impacted due to this. VM size depends on many other factors and bit complicated so we should not rely completely on this while understanding about dynamic memory allocation of our program.
As a consequence, there's no free VM regrion big enough to hold 1.5
GB.
Yes, due to fragmentation, there is no contiguous 1.5GB memory. It should be noted that total remaining(free) memory would be more than 1.5GB but not in fragmented state. Hence there is not big contiguous memory.
But I'm not sure why - since I'm definitely freeing the memory I used.
Is it some "performance optimization" CRT does to minimize OS calls?
I have explained about why it may happen even though you have freed all your memory. Now in order to fulfil user program request, OS will call to its virtual memory manager and try to allocate the memory which would be used by heap memory manager. But grabbing the additional memory does depend on many other complex factor which is not very easy to understand.
Possible Resolution of Memory Fragmentation
We should try to reuse the memory allocation rather than frequent memory allocation/free. There could be some patterns(like a particular request size allocation in particular order) which may lead overall memory into fragmented state. There could be substantial design change in your program in order to improve memory fragmentation. This is complex topic and require internal understanding of memory manager to understand the complete root cause of such things.
However there are tools exists on Windows based system which I am not much aware. But I found one excellent SO post regarding the which tool(on windows) can be useful to understand and check the fragmentation status of your program by yourself.
https://mcmap.net/q/1265655/-heap-fragmentation-and-windows-memory-manager
new
is not matched by adelete
etc. – Seatingvector
is that the many smaller allocations inTestMemory
is causing fragmentation, whichTestMemory2
doesn't, since it's allocating a big chunk. The remedy for memory fragmentation is to avoid it. – Corticosteroid