How to find LCM of {1, 2, ..., n} where 0 < n < 10001 in fastest possible way. The one way is to calculate n! / gcd (1,2,.....,n) but this can be slow as number of testcases are t < 501 and the output should be LCM ( n! ) % 1000000007
Code for the same is:
#include<bits/stdc++.h>
using namespace std;
#define p 1000000007;
int fact[10001] = {1};
int gcd[10001] = {1};
int main()
{
int i, j;
for( i = 2;i < 10001; i++){
fact[i] = ( i * fact[i-1]) % p;
}
for(i=2 ;i < 10001; i++){
gcd[i] =__gcd( gcd[i-1], i );
}
int t;
cin >> t;
while( t-- ) {
int n;
cin >> n;
int res = ( fact[n] / gcd[n] );
cout << res << endl;
}
return 0;
}
But this code is not performing as well. Why?
lcm(a, b) * gcd(a, b) = a * b
does only hold for two numbers. It is not correct for more input parameters. lcm and gcd have a prime factor decomposition with the maximum and minimum exponents respectively, whereas the product sums them. Andsum(e1, e2, ...) - min(e1, e2, ...) != max(e1, e2, ...)
. – Slovak