what is difference between metrics.r2_score and acccuracy_score for calculating accuracy in a machine learning model.
When I try this:
from sklearn import metrics
from sklearn.metrics import accuracy_score
print("Accuracy = ", 1 - metrics.r2_score(y_test,y_pred))
print("Accuracy1 = ", accuracy_score(y_test,y_pred))
I get this:
Accuracy = 0.9871059362722768
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-16-d19d2fd401dc> in <module>
2 from sklearn.metrics import accuracy_score
3 print("Accuracy = ", 1 - metrics.r2_score(y_test,y_pred))
----> 4 print("Accuracy1 = ", accuracy_score(y_test,y_pred))
~/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py in
accuracy_score(y_true, y_pred, normalize, sample_weight)
174
175 # Compute accuracy for each possible representation
--> 176 y_type, y_true, y_pred = _check_targets(y_true, y_pred)
177 check_consistent_length(y_true, y_pred, sample_weight)
178 if y_type.startswith('multilabel'):
~/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py in
_check_targets(y_true, y_pred)
86 # No metrics support "multiclass-multioutput" format
87 if (y_type not in ["binary", "multiclass", "multilabel-indicator"]):
---> 88 raise ValueError("{0} is not supported".format(y_type))
89
90 if y_type in ["binary", "multiclass"]:
ValueError: continuous is not supported
artificial-intelligence
orfloating-accuracy
- kindly do not spam irrelevant tags (removed). – Towards