I want to use Hausdorff Distance as a metric for training, but I just found the Weighted_Hausdorff_loss and used it as a metric for medical image segmentation.
import math
import numpy as np
import tensorflow as tf
from sklearn.utils.extmath import cartesian
resized_height = 192
resized_width = 192
max_dist = math.sqrt(resized_height**2 + resized_width**2)
n_pixels = resized_height * resized_width
all_img_locations = tf.convert_to_tensor(cartesian([np.arange(resized_height), np.arange(resized_width)]),
tf.float32)
batch_size = 1
def tf_repeat(tensor, repeats):
"""
Args:
input: A Tensor. 1-D or higher.
repeats: A list. Number of repeat for each dimension, length must be the same as the number of dimensions in input
Returns:
A Tensor. Has the same type as input. Has the shape of tensor.shape * repeats
"""
with tf.variable_scope("repeat"):
expanded_tensor = tf.expand_dims(tensor, -1)
multiples = [1] + repeats
tiled_tensor = tf.tile(expanded_tensor, multiples = multiples)
repeated_tesnor = tf.reshape(tiled_tensor, tf.shape(tensor) * repeats)
return repeated_tesnor
def Weighted_Hausdorff_loss(y_true, y_pred):
# https://arxiv.org/pdf/1806.07564.pdf
#prob_map_b - y_pred
#gt_b - y_true
terms_1 = []
terms_2 = []
y_true = tf.squeeze(y_true, axis=-1)
y_pred = tf.squeeze(y_pred, axis=-1)
# y_true = tf.reduce_mean(y_true, axis=-1)
# y_pred = tf.reduce_mean(y_pred, axis=-1)
for b in range(batch_size):
gt_b = y_true[b]
prob_map_b = y_pred[b]
# Pairwise distances between all possible locations and the GTed locations
n_gt_pts = tf.reduce_sum(gt_b)
gt_b = tf.where(tf.cast(gt_b, tf.bool))
gt_b = tf.cast(gt_b, tf.float32)
d_matrix = tf.sqrt(tf.maximum(tf.reshape(tf.reduce_sum(gt_b*gt_b, axis=1), (-1, 1)) + tf.reduce_sum(all_img_locations*all_img_locations, axis=1)-2*(tf.matmul(gt_b, tf.transpose(all_img_locations))), 0.0))
d_matrix = tf.transpose(d_matrix)
# Reshape probability map as a long column vector,
# and prepare it for multiplication
p = tf.reshape(prob_map_b, (n_pixels, 1))
n_est_pts = tf.reduce_sum(p)
p_replicated = tf_repeat(tf.reshape(p, (-1, 1)), [1, n_gt_pts])
eps = 1e-6
alpha = 4
# Weighted Hausdorff Distance
term_1 = (1 / (n_est_pts + eps)) * tf.reduce_sum(p * tf.reshape(tf.reduce_min(d_matrix, axis=1), (-1, 1)))
d_div_p = tf.reduce_min((d_matrix + eps) / (p_replicated**alpha + eps / max_dist), axis=0)
d_div_p = tf.clip_by_value(d_div_p, 0, max_dist)
term_2 = tf.reduce_mean(d_div_p, axis=0)
terms_1.append(term_1)
terms_2.append(term_2)
terms_1 = tf.stack(terms_1)
terms_2 = tf.stack(terms_2)
terms_1 = tf.Print(tf.reduce_mean(terms_1), [tf.reduce_mean(terms_1)], "term 1")
terms_2 = tf.Print(tf.reduce_mean(terms_2), [tf.reduce_mean(terms_2)], "term 2")
res = terms_1 + terms_2
return res
model.compile(optimizer=optimizers.Adam(lr=1e-3),
loss=bce_dice_loss, metrics=['accuracy',iou_metric,specificity,sensitivity,Weighted_Hausdorff_loss])
It succeeded in one dataset but not the other one. It returned val_Weighted_Hausdorff_loss: nan
Would you like to tell me how to use Hausdorff Distance as metric?
I think the problem is tf.reduce_mean
and tf.reduce_min
because it is a LOSS
But I don't know how to solve it. Would you like to give me some hint?
term_1 = (1 / (n_est_pts + eps)) * tf.reduce_sum(p * tf.reshape(tf.reduce_min(d_matrix, axis=1), (-1, 1)))
d_div_p = tf.reduce_min((d_matrix + eps) / (p_replicated**alpha + eps / max_dist), axis=0)
d_div_p = tf.clip_by_value(d_div_p, 0, max_dist)
term_2 = tf.reduce_mean(d_div_p, axis=0)
terms_1.append(term_1)
terms_2.append(term_2)
terms_1 = tf.stack(terms_1)
terms_2 = tf.stack(terms_2)
terms_1 = tf.Print(tf.reduce_mean(terms_1), [tf.reduce_mean(terms_1)], "term 1")
terms_2 = tf.Print(tf.reduce_mean(terms_2), [tf.reduce_mean(terms_2)], "term 2")
cdist
defined? looks to me like it could be scipy. that would make it non-differentiable by tensorflow, so you can't use it in a loss function – Litho