I would like to disagree with the accepted answer that you cannot usefully differentiate higher rank functions, or that you need to restrict yourself to a particularly small subset of them by demonstrating it in practice.
Using my Haskell 'ad' package, we get:
ghci> :m + Numeric.AD
ghci> diff (\x -> sum (map (**x) [1..20])) 10
7.073726805128313e13
We can extract what was done by abusing a traced numeric type to answer your question of the derivative is:
ghci> :m + Debug.Traced
ghci> putStrLn $ showAsExp $ diff (\x -> sum (map (**x) [1..20])) (unknown "x" :: Traced Double)
1.0 * (1.0 ** x * log 1.0) +
1.0 * (2.0 ** x * log 2.0) +
1.0 * (3.0 ** x * log 3.0) +
1.0 * (4.0 ** x * log 4.0) +
1.0 * (5.0 ** x * log 5.0) +
1.0 * (6.0 ** x * log 6.0) +
1.0 * (7.0 ** x * log 7.0) +
1.0 * (8.0 ** x * log 8.0) +
1.0 * (9.0 ** x * log 9.0) +
1.0 * (10.0 ** x * log 10.0) +
1.0 * (11.0 ** x * log 11.0) +
1.0 * (12.0 ** x * log 12.0) +
1.0 * (13.0 ** x * log 13.0) +
1.0 * (14.0 ** x * log 14.0) +
1.0 * (15.0 ** x * log 15.0) +
1.0 * (16.0 ** x * log 16.0) +
1.0 * (17.0 ** x * log 17.0) +
1.0 * (18.0 ** x * log 18.0) +
1.0 * (19.0 ** x * log 19.0) +
1.0 * (20.0 ** x * log 20.0)
With full sharing you get the rather more horrific looking results, that are sometimes asymptotically more efficient.
ghci> putStrLn $ showAsExp $ reShare $ diff (\x -> sum (map (**x) [1..20]))
(unknown "x" :: Traced Double)
let _21 = 1.0 ** x;
_23 = log 1.0;
_20 = _21 * _23;
_19 = 1.0 * _20;
_26 = 2.0 ** x;
_27 = log 2.0;
_25 = _26 * _27;
_24 = 1.0 * _25;
_18 = _19 + _24;
_30 = 3.0 ** x;
_31 = log 3.0;
_29 = _30 * _31;
_28 = 1.0 * _29;
_17 = _18 + _28;
_34 = 4.0 ** x;
_35 = log 4.0;
_33 = _34 * _35;
_32 = 1.0 * _33;
_16 = _17 + _32;
_38 = 5.0 ** x;
_39 = log 5.0;
_37 = _38 * _39;
_36 = 1.0 * _37;
_15 = _16 + _36;
_42 = 6.0 ** x;
_43 = log 6.0;
_41 = _42 * _43;
_40 = 1.0 * _41;
_14 = _15 + _40;
_46 = 7.0 ** x;
_47 = log 7.0;
_45 = _46 * _47;
_44 = 1.0 * _45;
_13 = _14 + _44;
_50 = 8.0 ** x;
_51 = log 8.0;
_49 = _50 * _51;
_48 = 1.0 * _49;
_12 = _13 + _48;
_54 = 9.0 ** x;
_55 = log 9.0;
_53 = _54 * _55;
_52 = 1.0 * _53;
_11 = _12 + _52;
_58 = 10.0 ** x;
_59 = log 10.0;
_57 = _58 * _59;
_56 = 1.0 * _57;
_10 = _11 + _56;
_62 = 11.0 ** x;
_63 = log 11.0;
_61 = _62 * _63;
_60 = 1.0 * _61;
_9 = _10 + _60;
_66 = 12.0 ** x;
_67 = log 12.0;
_65 = _66 * _67;
_64 = 1.0 * _65;
_8 = _9 + _64;
_70 = 13.0 ** x;
_71 = log 13.0;
_69 = _70 * _71;
_68 = 1.0 * _69;
_7 = _8 + _68;
_74 = 14.0 ** x;
_75 = log 14.0;
_73 = _74 * _75;
_72 = 1.0 * _73;
_6 = _7 + _72;
_78 = 15.0 ** x;
_79 = log 15.0;
_77 = _78 * _79;
_76 = 1.0 * _77;
_5 = _6 + _76;
_82 = 16.0 ** x;
_83 = log 16.0;
_81 = _82 * _83;
_80 = 1.0 * _81;
_4 = _5 + _80;
_86 = 17.0 ** x;
_87 = log 17.0;
_85 = _86 * _87;
_84 = 1.0 * _85;
_3 = _4 + _84;
_90 = 18.0 ** x;
_91 = log 18.0;
_89 = _90 * _91;
_88 = 1.0 * _89;
_2 = _3 + _88;
_94 = 19.0 ** x;
_95 = log 19.0;
_93 = _94 * _95;
_92 = 1.0 * _93;
_1 = _2 + _92;
_98 = 20.0 ** x;
_99 = log 20.0;
_97 = _98 * _99;
_96 = 1.0 * _97;
_0 = _1 + _96;
in _0
In general automatic differentiation has no problem with higher rank functions. Source-to-source translations may run into a few gotchas depending on the limitations of the particular tool, however.