Finding 1st order neighbors using shapefile polygons
Asked Answered
I

2

5

I am looking a efficient way to find the 1st order neighbors of a given polygon. My data are in shapefile format.

My first idea was to calculate the x and y coordinates of the polygons' centroids in order to find the neighbor's centroids.

import pysal
from pysal.common import *
import pysal.weights
import numpy as np
from scipy import sparse,float32
import scipy.spatial
import os, gc, operator


def get_points_array_from_shapefile(inFile):
    """
    Gets a data array of x and y coordinates from a given shape file

    Parameters
    ----------
    shapefile: string name of a shape file including suffix

    Returns
    -------
    points: array (n,2) a data array of x and y coordinates

    Notes
    -----
    If the given shape file includes polygons,
    this function returns x and y coordinates of the polygons' centroids

    Examples
    --------
    Point shapefile
    >>> from pysal.weights.util import get_points_array_from_shapefile
    >>> xy = get_points_array_from_shapefile('../examples/juvenile.shp')
    >>> xy[:3]
    array([[ 94.,  93.],
           [ 80.,  95.],
           [ 79.,  90.]])

    Polygon shapefile
    >>> xy = get_points_array_from_shapefile('../examples/columbus.shp')
    >>> xy[:3]
    array([[  8.82721847,  14.36907602],
           [  8.33265837,  14.03162401],
           [  9.01226541,  13.81971908]])

    (source: https://code.google.com/p/pysal/source/browse/trunk/pysal/weights/util.py?r=1013)

    """
    f = pysal.open(inFile)
    shapes = f.read()
    if f.type.__name__ == 'Polygon':
        data = np.array([shape.centroid for shape in shapes])
    elif f.type.__name__ == 'Point':
        data = np.array([shape for shape in shapes])
    f.close()
    return data


inFile = "../examples/myshapefile.shp"
my_centr = get_points_array_from_shapefile(inFile)

This approach could be valid for a regular grid but in my case, I need to find a "more general" solution. The figure shows the problem. Consider the yellow polygon has the referee. The neighbor's polygons are the gray polygons. Using the centroids-neighbors approach, the clear blue polygon is considered a neighbor but it doesn't have a side in common with the yellow polygon.

A recent solution modified from Efficiently finding the 1st order neighbors of 200k polygons can be the following:

from collections import defaultdict
inFile = 'C:\\MultiShapefile.shp'

shp = osgeo.ogr.Open(inFile)
layer = shp.GetLayer()
BlockGroupVertexDictionary = dict()
for index in xrange(layer.GetFeatureCount()):
    feature = layer.GetFeature(index)
    FID = str(feature.GetFID())
    geometry = feature.GetGeometryRef()
    pts = geometry.GetGeometryRef(0)
    # delete last points because is the first (see shapefile polygon topology)
    for p in xrange(pts.GetPointCount()-1):
        PointText = str(pts.GetX(p))+str(pts.GetY(p))
        # If coordinate is already in dictionary, append this BG's ID
        if PointText in BlockGroupVertexDictionary:
            BlockGroupVertexDictionary[PointText].append(FID)
        # If coordinate is not already in dictionary, create new list with this BG's ID
        else:
            BlockGroupVertexDictionary[PointText] = [FID]

With this solution, I have a dictionary with vertex coordinates as the keys and a list of block group IDs that have a vertex at that coordinate as the value.

>>> BlockGroupVertexDictionary
{'558324.3057036361423.57178': ['18'],
 '558327.4401686361422.40755': ['18', '19'],
 '558347.5890836361887.12271': ['1'],
 '558362.8645026361662.38757': ['17', '18'],
 '558378.7836876361760.98381': ['14', '17'],
 '558389.9225016361829.97259': ['14'],
 '558390.1235856361830.41498': ['1', '14'],
 '558390.1870856361652.96599': ['17', '18', '19'],
 '558391.32786361398.67786': ['19', '20'],
 '558400.5058556361853.25597': ['1'],
 '558417.6037156361748.57558': ['14', '15', '17', '19'],
 '558425.0594576362017.45522': ['1', '3'],
 '558438.2518686361813.61726': ['14', '15'],
 '558453.8892486362065.9571': ['3', '5'],
 '558453.9626046361375.4135': ['20', '21'],
 '558464.7845966361733.49493': ['15', '16'],
 '558474.6171066362100.82867': ['4', '5'],
 '558476.3606496361467.63697': ['21'],
 '558476.3607186361467.63708': ['26'],
 '558483.1668826361727.61931': ['19', '20'],
 '558485.4911846361797.12981': ['15', '16'],
 '558520.6376956361649.94611': ['25', '26'],
 '558525.9186066361981.57914': ['1', '3'],
 '558527.5061096362189.80664': ['4'],
 '558529.0036896361347.5411': ['21'],
 '558529.0037236361347.54108': ['26'],
 '558529.8873646362083.17935': ['4', '5'],
 '558533.062376362006.9792': ['1', '3'],
 '558535.4436256361710.90985': ['9', '16', '20'],
 '558535.4437266361710.90991': ['25'],
 '558548.7071816361705.956': ['9', '10'],
 '558550.2603156361432.56769': ['26'],
 '558550.2603226361432.56763': ['21'],
 '558559.5872216361771.26884': ['9', '16'],
 '558560.3288756362178.39003': ['4', '5'],
 '558568.7811926361768.05997': ['1', '9', '10'],
 '558572.749956362041.11051': ['3', '5'],
 '558573.5437016362012.53546': ['1', '3'],
 '558575.3048386362048.77518': ['2', '3'],
 '558576.189546362172.87328': ['5'],
 '558577.1149386361695.34587': ['7', '10'],
 '558579.0999636362020.47297': ['1', '3'],
 '558581.6312396362025.36096': ['0', '1'],
 '558586.7728956362035.28967': ['0', '3'],
 '558589.8015336362043.7987': ['2', '3'],
 '558601.3250076361686.30355': ['7'],
 '558601.3250736361686.30353': ['25'],
 '558613.7793476362164.19871': ['2', '5'],
 '558616.4062876361634.7097': ['7'],
 '558616.4063116361634.70972': ['25'],
 '558618.129066361634.29952': ['7', '11', '22'],
 '558618.1290896361634.2995': ['25'],
 '558626.9644156361875.47515': ['10', '11'],
 '558631.2229836362160.17325': ['2'],
 '558632.0261236361600.77448': ['25', '26'],
 '558639.495586361898.60961': ['11', '13'],
 '558650.4935686361918.91358': ['12', '13'],
 '558659.2473416361624.50945': ['8', '11', '22', '24'],
 '558664.5218136361857.94836': ['7', '10'],
 '558666.4126376361622.80343': ['8', '24'],
 '558675.1439056361912.52276': ['12', '13'],
 '558686.3385396361985.08892': ['0', '1'],
..................
.................
 '558739.4377836361931.57279': ['11', '13'],
 '558746.8758486361973.84475': ['11', '13'],
 '558751.3440576361902.20399': ['6', '11'],
 '558768.8067026361258.4715': ['26'],
 '558779.9170276361961.16408': ['6', '11'],
 '558785.7399596361571.47416': ['22', '24'],
 '558791.5596546361882.09619': ['8', '11'],
 '558800.2351726361877.75843': ['6', '8'],
 '558802.7700816361332.39227': ['26'],
 '558802.770176361332.39218': ['22'],
 '558804.7899976361336.78827': ['22'],
 '558812.9707376361565.14513': ['23', '24'],
 '558833.2667696361940.68932': ['6', '24'],
 '558921.2068976361539.98868': ['22', '23'],
 '558978.3570116361885.00604': ['23', '24'],
 '559022.80716361982.3729': ['23'],
 '559096.8905816361239.42141': ['22'],
 '559130.7573166361935.80614': ['23'],
 '559160.3907086361434.15513': ['22']}

enter image description here

Itching answered 21/11, 2012 at 11:16 Comment(6)
What is the precise definition of a 1st order neighbor on a non-regular grid? Does it simply mean "shares an edge"?Pentimento
@martineau, 1st order neighbor are all polygons with a common border (=vertex in case of shapefile) with the polygon-iItching
@martineau. I find this link on google. gis.stackexchange.com/questions/17457/… look a good strat point but i wish to work outside Arcmap moduleItching
Have a look at shapely. toblerity.github.com/shapely/manual.htmlPaulettapaulette
@Gianni, not sure if you ever got an answer, but if you're willing to do it in R there is a pretty simple function called poly2nb, as part of the spdep package: inside-r.org/packages/cran/spdep/docs/poly2nb. If you did get a Python answer I'd be very interested to learn it.Rodolforodolph
If you're willing to load your spatial weights into the pysal library, there is a pysal.shimbel method that, for given weights, returns the first-, second-, third-order (and so on) relations for each observation.Occupant
M
8

Just incase this is still an open question for the OP or someone else stumbles here.

import pysal as ps 
w = ps.queen_from_shapefile('shapefile.shp')

http://pysal.readthedocs.io/en/latest/users/tutorials/weights.html#pysal-spatial-weight-types

Makell answered 16/1, 2015 at 22:37 Comment(0)
P
0

I am not familiar with the specific data formats being used, but regardless, think the following idea would work.

In Python you can make sets out of tuples of numbers, i.e. (x,y) and (x1,y1,x2,y2), so it should be possible to make a set representing all the points or edges in a given polygon. Afterwards you would be able use very fast set intersection operations to find all 1st order neighbors.

You might be able to speed the process up using some sort of trivial rejection test to avoid further processing of polygons which could not possibly be a neighbor -- perhaps using your polygons' centroids idea.

Does this explanation make sense?

Pentimento answered 21/11, 2012 at 13:30 Comment(4)
so so, sorry. I am trying to write a new approch in order to store in a dictionary all single vertex polygon by polygon and add the Id of each polygonsItching
@Gianni: Not clear what that has to do with finding the 1st order neighbors of a given polygon -- you're going to have to compare vertices or edge vectors at some level in order to do that.Pentimento
give a look of my new solution. From the dictionary i need to understand for example polygon '18' the polygons with common verticesItching
A set is somewhat similar to a dictionary (in fact they were once implemented using them) but have been optimized for set operations like union, intersection, difference, etc. Regardless, one thing I am suggesting is that it would be more efficient with both a set or dictionary to use keys made like this (pts.GetX(p), pts.GetY(p)) which is a tuple instead of the str(pts.GetX(p))+str(pts.GetY(p)) used in the solution's code you just added.Pentimento

© 2022 - 2024 — McMap. All rights reserved.