I am interested in using the Project Tango tablet for 3D reconstruction using arbitrary point features. In the current SDK version, we seem to have access to the following data.
- A 1280 x 720 RGB image.
- A point cloud with 0-~10,000 points, depending on the environment. This seems to average between 3,000 and 6,000 in most environments.
What I really want is to be able to identify a 3D point for key points within an image. Therefore, it makes sense to project depth into the image plane. I have done this, and I get something like this:
The problem with this process is that the depth points are sparse compared to the RGB pixels. So I took it a step further and performed interpolation between the depth points. First, I did Delaunay triangulation, and once I got a good triangulation, I interpolated between the 3 points on each facet and got a decent, fairly uniform depth image. Here are the zones where the interpolated depth is valid, imposed upon the RGB iamge.
Now, given the camera model, it's possible to project depth back into Cartesian coordinates at any point on the depth image (since the depth image was made such that each pixel corresponds to a point on the original RGB image, and we have the camera parameters of the RGB camera). However, if you look at the triangulation image and compare it to the original RGB image, you can see that depth is valid for all of the uninteresting points in the image: blank, featureless planes mostly. This isn't just true for this single set of images; it's a trend I'm seeing for the sensor. If a person stands in front of the sensor, for example, there are very few depth points within their silhouette.
As a result of this characteristic of the sensor, if I perform visual feature extraction on the image, most of the areas with corners or interesting textures fall in areas without associated depth information. Just an example: I detected 1000 SIFT keypoints from an an RGB image from an Xtion sensor, and 960 of those had valid depth values. If I do the same thing to this system, I get around 80 keypoints with valid depth. At the moment, this level of performance is unacceptable for my purposes.
I can guess at the underlying reasons for this: it seems like some sort of plane extraction algorithm is being used to get depth points, whereas Primesense/DepthSense sensors are using something more sophisticated.
So anyway, my main question here is: can we expect any improvement in the depth data at a later point in time, through improved RGB-IR image processing algorithms? Or is this an inherent limit of the current sensor?