I encountered a similar problem when I was working on a project using OpenCV 2.4.9 on the Intel Edison platform. Before doing any processing, it was taking roughly 80ms just to perform the frame grab. It turns out that OpenCV's camera capture logic for Linux doesn't seem to be implemented properly, at least in the 2.4.9 release. The underlying driver only uses one buffer, so it's not possible to use multi-threading in the application layer to work around it - until you attempt to grab the next frame, the only buffer in the V4L2 driver is locked.
The solution is to not use OpenCV's VideoCapture class. Maybe it was fixed to use a sensible number of buffers at some point, but as of 2.4.9, it wasn't. In fact, if you look at this article by the same author as the link provided by @Nickil Maveli, you'll find that as soon as he provides suggestions for improving the FPS on a Raspberry Pi, he stops using OpenCV's VideoCapture. I don't believe that is a coincidence.
Here's my post about it on the Intel Edison forum: https://communities.intel.com/thread/58544.
I basically wound up writing my own class to handle the frame grabs, directly using V4L2. That way you can provide a circular list of buffers and allow the frame grabbing and application logic to be properly decoupled. That was done in C++ though, for a C++ application. Assuming the above link delivers on its promises, that might be a far easier approach. I'm not sure whether it would work on BeagleBone, but maybe there's something similar to PiCamera out there. Good luck.
EDIT: I took a look at the source code for 2.4.11 of OpenCV. It looks like they now default to using 4 buffers, but you must be using V4L2 to take advantage of that. If you look closely at your error message HIGHGUI ERROR: V4L: Property...
, you see that it references V4L, not V4L2. That means that the build of OpenCV you're using is falling back on the old V4L driver. In addition to the singular buffer causing performance issues, you're using an ancient driver that probably has many limitations and performance problems of its own.
Your best bet would be to build OpenCV yourself to make sure that it uses V4L2. If I recall correctly, the OpenCV configuration process checks whether the V4L2 drivers are installed on the machine and builds it accordingly, so you'll want to make sure that V4L2 and any related dev packages are installed on the machine you use to build OpenCV.