I have this df :
CET MaxTemp MeanTemp MinTemp MaxHumidity MeanHumidity MinHumidity revenue events
0 2016-11-17 11 9 7 100 85 63 385.943800 rain
1 2016-11-18 9 6 3 93 83 66 1074.160340 storm
2 2016-11-19 8 6 4 93 87 76 2980.857860
3 2016-11-20 10 7 4 93 84 81 1919.723960 rain-thunderstorm
4 2016-11-21 14 10 7 100 89 77 884.279340
5 2016-11-22 13 10 7 93 79 63 869.071070
6 2016-11-23 11 8 5 100 91 82 760.289260 fog-rain
7 2016-11-24 9 7 4 93 80 66 2481.689270
8 2016-11-25 7 4 1 87 74 57 2745.990070
9 2016-11-26 7 3 -1 100 88 61 2273.413250 rain
10 2016-11-27 10 7 4 100 81 66 2630.414900 fog
Where:
CET object
Mean TemperatureC int64
Mean Humidity int64
Events object
revenue object
dtype: object
I want to plot all the columns against each other, to see how they variate over time. So, x-axis will be column CET
and y-axis will have the rest of the columns. How can I do that? I used:
plt.figure();
df.plot(kind='line')
plt.xticks(rotation='vertical')
plt.yticks()
pylab.show()
but I can only see the Mean TemperatureC and Mean Humidity. Moreover, the x-axis is not CET date values, but the row number