What are the default Kernel-Size, Zero-Padding, and Stride arguments in Conv2D (keras.layers.Conv2D)? What happens if these arguments are not specified?
What is the default kernel-size, Zero-padding and stride for keras.layers.Conv2D?
You can find the documentation here: https://keras.io/layers/convolutional/
In python you can give default values for parameters of a function, If you don't specify these parameters while calling the function, defaults are used instead.
In the link above you'll find that Conv2D has the parameters:
filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None
only filters and kernel_size parameters must be given, others are optional or has default values next to them.
As this link suggests, it has a structure like this:
tf.keras.layers.Conv2D(
filters,
kernel_size,
strides=(1, 1),
padding="valid",
data_format=None,
dilation_rate=(1, 1),
groups=1,
activation=None,
use_bias=True,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs
)
You have to specify filters
and kernel_size
. These parameters have no default.
Default padding
is valid
, which means no zero-padding, and the default strides
is (1,1)
.
© 2022 - 2025 — McMap. All rights reserved.