I want to train a 21 class text classification model using Bert. But I have very little training data, so a downloaded a similar dataset with 5 classes with 2 million samples.t
And finetuned downloaded data with uncased pretrained model provided by bert.
And got about 98% validation accuracy.
Now, I want to use this model as pretrained model for my small custom data.
But I am getting shape mismatch with tensor output_bias from checkpoint reader
error as the check-point model has 5 classes and my custom data has 21 classes.
NFO:tensorflow:Calling model_fn.
INFO:tensorflow:Running train on CPU
INFO:tensorflow:*** Features ***
INFO:tensorflow: name = input_ids, shape = (32, 128)
INFO:tensorflow: name = input_mask, shape = (32, 128)
INFO:tensorflow: name = is_real_example, shape = (32,)
INFO:tensorflow: name = label_ids, shape = (32, 21)
INFO:tensorflow: name = segment_ids, shape = (32, 128)
Tensor("IteratorGetNext:3", shape=(32, 21), dtype=int32)
WARNING:tensorflow:From /home/user/Spine_NLP/bert/modeling.py:358: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
WARNING:tensorflow:From /home/user/Spine_NLP/bert/modeling.py:671: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.dense instead.
INFO:tensorflow:num_labels:21;logits:Tensor("loss/BiasAdd:0", shape=(32, 21), dtype=float32);labels:Tensor("loss/Cast:0", shape=(32, 21), dtype=float32)
INFO:tensorflow:Error recorded from training_loop: Shape of variable output_bias:0 ((21,)) doesn't match with shape of tensor output_bias ([5]) from checkpoint reader.