I'm implementing segment tree from an array of data, and I also want to maintaining the max/min of the tree while updating a range of data. Here is my initial approach following this tutorial http://p--np.blogspot.com/2011/07/segment-tree.html.
Unfortunately it doesn't work at all, the logic makes sense to me, but I'm a little confused about b
and e
, I wonder is this the range of the data
array? or it's the actual range of the tree? From what I understand, the max_segment_tree[1]
should hold the max
of the range [1, MAX_RANGE]
while min_segment_tree[1]
should hold the min
of the range [1, MAX_RANGE]
.
int data[MAX_RANGE];
int max_segment_tree[3 * MAX_RANGE + 1];
int min_segment_tree[3 * MAX_RANGE + 1];
void build_tree(int position, int left, int right) {
if (left > right) {
return;
}
else if (left == right) {
max_segment_tree[position] = data[left];
min_segment_tree[position] = data[left];
return;
}
int middle = (left + right) / 2;
build_tree(position * 2, left, middle);
build_tree(position * 2 + 1, middle + 1, right);
max_segment_tree[position] = max(max_segment_tree[position * 2], max_segment_tree[position * 2 + 1]);
min_segment_tree[position] = min(min_segment_tree[position * 2], min_segment_tree[position * 2 + 1]);
}
void update_tree(int position, int b, int e, int i, int j, int value) {
if (b > e || b > j || e < i) {
return;
}
if (i <= b && j >= e) {
max_segment_tree[position] += value;
min_segment_tree[position] += value;
return;
}
update_tree(position * 2 , b , (b + e) / 2 , i, j, value);
update_tree(position * 2 + 1 , (b + e) / 2 + 1 , e , i, j, value);
max_segment_tree[position] = max(max_segment_tree[position * 2], max_segment_tree[position * 2 + 1]);
min_segment_tree[position] = min(min_segment_tree[position * 2], min_segment_tree[position * 2 + 1]);
}
EDIT Adding test cases:
#include <iostream>
#include <iomanip>
#include <vector>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <utility>
#include <stack>
#include <deque>
#include <queue>
#include <fstream>
#include <functional>
#include <numeric>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cassert>
using namespace std;
const int MAX_RANGE = 20;
int data[MAX_RANGE];
int max_segment_tree[2 * MAX_RANGE];
int min_segment_tree[2 * MAX_RANGE];
int added_to_interval[2 * MAX_RANGE] = {0};
void update_bruteforce(int x, int y, int z, int &smallest, int &largest) {
for (int i = x - 1; i < y; ++i) {
data[i] += z;
}
// update min/max
smallest = data[0];
largest = data[0];
for (int i = 0; i < MAX_RANGE; ++i) {
if (data[i] < smallest) {
smallest = data[i];
}
if (data[i] > largest) {
largest = data[i];
}
}
}
void build_tree(int position, int left, int right) {
if (left > right) {
return;
}
else if (left == right) {
max_segment_tree[position] = data[left];
min_segment_tree[position] = data[left];
return;
}
int middle = (left + right) / 2;
build_tree(position * 2, left, middle);
build_tree(position * 2 + 1, middle + 1, right);
max_segment_tree[position] = max(max_segment_tree[position * 2], max_segment_tree[position * 2 + 1]);
min_segment_tree[position] = min(min_segment_tree[position * 2], min_segment_tree[position * 2 + 1]);
}
void update_tree(int position, int b, int e, int i, int j, int value) {
if (b > e || b > j || e < i) {
return;
}
if (i <= b && e <= j) {
max_segment_tree[position] += value;
min_segment_tree[position] += value;
added_to_interval[position] += value;
return;
}
update_tree(position * 2 , b , (b + e) / 2 , i, j, value);
update_tree(position * 2 + 1 , (b + e) / 2 + 1 , e , i, j, value);
max_segment_tree[position] = max(max_segment_tree[position * 2], max_segment_tree[position * 2 + 1]) + added_to_interval[position];
min_segment_tree[position] = min(min_segment_tree[position * 2], min_segment_tree[position * 2 + 1]) + added_to_interval[position];
}
void update(int x, int y, int value) {
// memset(added_to_interval, 0, sizeof(added_to_interval));
update_tree(1, 0, MAX_RANGE - 1, x - 1, y - 1, value);
}
namespace unit_test {
void test_show_data() {
for (int i = 0; i < MAX_RANGE; ++i) {
cout << data[i] << ", ";
}
cout << endl << endl;
}
void test_brute_force_and_segment_tree() {
// arrange
int number_of_operations = 100;
for (int i = 0; i < MAX_RANGE; ++i) {
data[i] = i + 1;
}
build_tree(1, 0, MAX_RANGE - 1);
// act
int operation;
int x;
int y;
int z;
int smallest = 1;
int largest = MAX_RANGE;
// assert
while (number_of_operations--) {
operation = rand() % 1;
x = 1 + rand() % MAX_RANGE;
y = x + (rand() % (MAX_RANGE - x + 1));
z = 1 + rand() % MAX_RANGE;
if (operation == 0) {
z *= 1;
}
else {
z *= -1;
}
cout << "left, right, value: " << x - 1 << ", " << y - 1 << ", " << z << endl;
update_bruteforce(x, y, z, smallest, largest);
update(x, y, z);
test_show_data();
cout << "correct:\n";
cout << "\tsmallest = " << smallest << endl;
cout << "\tlargest = " << largest << endl;
cout << "possibly correct:\n";
cout << "\tsmallest = " << min_segment_tree[1] << endl;
cout << "\tlargest = " << max_segment_tree[1] << endl;
cout << "\n--------------------------------------------------------------\n";
cin.get();
}
}
}
int main() {
unit_test::test_brute_force_and_segment_tree();
}
[left, right]
but still maintains themax/min
of the tree. It's not necessary to query a range[left, right]
because I only want to look at eithermax/min
. Thanks. – Fccrand() % 1
is always zero, you probably wantrand() & 1
orrand() % 2
– Legendrerand() % 1
is really my bad :(. The consequence of coding late at night. – Fcc