Typically, in Dijkstra's algorithm, for each encountered node, we check whether that node was processed before attempting to update the distances of its neighbors and adding them to the queue. This method is under the assumption that if a distance to a node is set once then the distance to that node cannot improve for the rest of the algorithm, and so if the node was processed once already, then the distances to its neighbors cannot improve. However, this is not true for graphs with negative edges.
If there are no negatives cycles then if we remove that "processed" check, then will the algorithm always work for graphs with negative edges?
Edit: an example of a graph where the algorithm would fail would be nice
Edit 2: Java code https://pastebin.com/LSnfzBW4
Example usage:
3 3 1 <-- 3 nodes, 3 edges, starting point at node 1
1 2 5 <-- edge of node 1 and node 2 with a weight of 5 (unidirectional)
2 3 -20 <-- more edges
1 3 2