I'm not aware of a native function that stops if it comes across a non-NA value, but we can write a simple one using Rcpp:
Rcpp::cppFunction("bool any_NonNA(NumericVector v) {
for(size_t i = 0; i < v.length(); i++) {
if(!(Rcpp::traits::is_na<REALSXP>(v[i]))) return true;
}
return false;
}")
This creates an R function called any_NonNA
which does what we need. Let's test it on a large vector of 100,000 NA values:
test <- rep(NA, 1e5)
any_NonNA(test)
#> [1] FALSE
any(!is.na(test))
#> [1] FALSE
Now let's make the first element a non-NA:
test[1] <- 1
any_NonNA(test)
#> [1] TRUE
any(!is.na(test))
#> [1] TRUE
So it gives the correct result, but is it faster?
Certainly, in this example, since it should stop after the first element, it should be much quicker. This is indeed the case if we do a head-to-head comparison:
microbenchmark::microbenchmark(
baseR = any(!is.na(test)),
Rcpp = any_NonNA(test)
)
#> Unit: microseconds
#> expr min lq mean median uq max neval cld
#> baseR 275.1 525.0 670.948 533.05 568.7 13029.9 100 b
#> Rcpp 1.6 2.1 4.319 3.30 5.1 33.7 100 a
As expected, this is a couple of orders of magnitude faster. What about if our first non-NA value is mid-way through the vector?
test[1] <- NA
test[50000] <- 1
microbenchmark::microbenchmark(
baseR = any(!is.na(test)),
Rcpp = any_NonNA(test)
)
#> Unit: microseconds
#> expr min lq mean median uq max neval cld
#> baseR 332.1 579.35 810.948 597.95 624.40 12010.4 100 b
#> Rcpp 299.4 300.70 311.516 305.10 309.25 370.1 100 a
Still faster, but not by much.
If we put our non-NA value at the end we shouldn't see much difference:
test[50000] <- NA
test[100000] <- 1
microbenchmark::microbenchmark(
baseR = any(!is.na(test)),
Rcpp = any_NonNA(test)
)
#> Unit: microseconds
#> expr min lq mean median uq max neval cld
#> baseR 395.6 631.65 827.173 642.6 663.8 11357.0 100 a
#> Rcpp 596.3 602.25 608.011 605.8 612.6 632.6 100 a
So this does indeed look to be faster than the base R solution (at least for large vectors).
!all(is.na())
is about a third quicker thanany(!is.na())
on my machine. – Pickings