I had similar question ( https://gamedev.stackexchange.com/questions/174857/mapping-a-texture-to-a-2d-quadrilateral/174871 ) , and at gamedev they suggested using imaginary Z coord, which I calculate using the following C code, which appears to be working in general case (not just trapezoids):
//usual euclidean distance
float distance(int ax, int ay, int bx, int by) {
int x = ax-bx;
int y = ay-by;
return sqrtf((float)(x*x + y*y));
}
void gfx_quad(gfx_t *dst //destination texture, we are rendering into
,gfx_t *src //source texture
,int *quad // quadrilateral vertices
)
{
int *v = quad; //quad vertices
float z = 20.0;
float top = distance(v[0],v[1],v[2],v[3]); //top
float bot = distance(v[4],v[5],v[6],v[7]); //bottom
float lft = distance(v[0],v[1],v[4],v[5]); //left
float rgt = distance(v[2],v[3],v[6],v[7]); //right
// By default all vertices lie on the screen plane
float az = 1.0;
float bz = 1.0;
float cz = 1.0;
float dz = 1.0;
// Move Z from screen, if based on distance ratios.
if (top<bot) {
az *= top/bot;
bz *= top/bot;
} else {
cz *= bot/top;
dz *= bot/top;
}
if (lft<rgt) {
az *= lft/rgt;
cz *= lft/rgt;
} else {
bz *= rgt/lft;
dz *= rgt/lft;
}
// draw our quad as two textured triangles
gfx_textured(dst, src
, v[0],v[1],az, v[2],v[3],bz, v[4],v[5],cz
, 0.0,0.0, 1.0,0.0, 0.0,1.0);
gfx_textured(dst, src
, v[2],v[3],bz, v[4],v[5],cz, v[6],v[7],dz
, 1.0,0.0, 0.0,1.0, 1.0,1.0);
}
I'm doing it in software to scale and rotate 2d sprites, and for OpenGL 3d app you will need to do it in pixel/fragment shader, unless you will be able to map these imaginary az,bz,cz,dz into your actual 3d space and use the usual pipeline. DMGregory gave exact code for OpenGL shaders: https://gamedev.stackexchange.com/questions/148082/how-can-i-fix-zig-zagging-uv-mapping-artifacts-on-a-generated-mesh-that-tapers