The fact that applying of a median filter with the window size 1 will not change the array gives us a freedom to apply the median filter row-wise or column-wise.
For example, this code
from scipy.ndimage import median_filter
import numpy as np
arr = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
median_filter(arr, size=3, cval=0, mode='constant')
#with cval=0, mode='constant' we set that input array is extended with zeros
#when window overlaps edges, just for visibility and ease of calculation
outputs an expected filtered with window (3, 3) array
array([[0., 2., 0.],
[2., 5., 3.],
[0., 5., 0.]])
because median_filter automatically extends the size
to all dimensions, so the same effect we can get with:
median_filter(arr, size=(3, 3), cval=0, mode='constant')
Now, we can also apply median_filter row-wise with setting 1 to the first element of size
median_filter(arr, size=(1, 3), cval=0, mode='constant')
Output:
array([[1., 2., 2.],
[4., 5., 5.],
[7., 8., 8.]])
And column-wise with the same logic
median_filter(arr, size=(3, 1), cval=0, mode='constant')
Output:
array([[1., 2., 3.],
[4., 5., 6.],
[4., 5., 6.]])
data = np.reshape(data, len(data))
– Culiciddata.flatten(order='C')
; this work! Thanks @John Zwinck. Now for the second question, how can I obtain these other filters? – Culicid