I have a list of ~300 IP addresses that I would like to plot on a map of the world. Can you explain roughly how I could do that with Python?
EDIT: I'm also interested in the visualization part of the question
I have a list of ~300 IP addresses that I would like to plot on a map of the world. Can you explain roughly how I could do that with Python?
EDIT: I'm also interested in the visualization part of the question
You can use the hostip.info API. For example:
http://api.hostip.info/get_html.php?ip=64.233.160.0
So your Python code using urllib2
would be:
import urllib2
f = urllib2.urlopen("http://api.hostip.info/get_html.php?ip=64.233.160.0")
data = f.read()
f.close()
Then retrieve the data from that returned result.
If you require longitude and latitude, use the position=true
flag:
http://api.hostip.info/get_html.php?ip=64.233.160.0&position=true
Here is my solution in Python 3.x to return geo-location info given a dataframe containing IP Address(s); efficient parallelized application of function on vectorized pd.series/dataframe is the way to go.
For plotting of records on the map, subsetting latitude and longitude information followed by using suitable Mapping API's like the Google Maps Api or tableau helps towards Data Visualization.
Will contrast performance of two popular libraries to return location.
TLDR: use geolite2 method.
1. geolite2
package from geolite2
library
Input
# !pip install maxminddb-geolite2
import time
from geolite2 import geolite2
geo = geolite2.reader()
df_1 = train_data.loc[:50,['IP_Address']]
def IP_info_1(ip):
try:
try:
x = geo.get(ip)
except ValueError: #Faulty IP value
return np.nan
try:
return x['country']['names']['en'] if x is not None else np.nan
except KeyError: #Faulty Key value
return np.nan
s_time = time.time()
# map IP --> country
#apply(fn) applies fn. on all pd.series elements
df_1['country'] = df_1.loc[:,'IP_Address'].apply(IP_info_1)
print(df_1.head(), '\n')
print('Time:',str(time.time()-s_time)+'s \n')
print(type(geo.get('48.151.136.76')))
Output
IP_Address country
0 48.151.136.76 United States
1 94.9.145.169 United Kingdom
2 58.94.157.121 Japan
3 193.187.41.186 Austria
4 125.96.20.172 China
Time: 0.09906983375549316s
<class 'dict'>
2. DbIpCity
package from ip2geotools
library
Input
# !pip install ip2geotools
import time
s_time = time.time()
from ip2geotools.databases.noncommercial import DbIpCity
df_2 = train_data.loc[:50,['IP_Address']]
def IP_info_2(ip):
try:
return DbIpCity.get(ip, api_key = 'free').country
except:
return np.nan
df_2['country'] = df_2.loc[:, 'IP_Address'].apply(IP_info_2)
print(df_2.head())
print('Time:',str(time.time()-s_time)+'s')
print(type(DbIpCity.get('48.151.136.76',api_key = 'free')))
Output
IP_Address country
0 48.151.136.76 US
1 94.9.145.169 GB
2 58.94.157.121 JP
3 193.187.41.186 AT
4 125.96.20.172 CN
Time: 80.53318452835083s
<class 'ip2geotools.models.IpLocation'>
A reason why the huge time difference could be due to the Data structure of the output, i.e direct subsetting from dictionaries seems way more efficient than indexing from the specicialized ip2geotools.models.IpLocation object.
Also, the output of the 1st method is dictionary containing geo-location data, subset respecitively to obtain needed info:
x = geolite2.reader().get('48.151.136.76')
print(x)
>>>
{'city': {'geoname_id': 5101798, 'names': {'de': 'Newark', 'en': 'Newark', 'es': 'Newark', 'fr': 'Newark', 'ja': 'ニューアーク', 'pt-BR': 'Newark', 'ru': 'Ньюарк'}},
'continent': {'code': 'NA', 'geoname_id': 6255149, 'names': {'de': 'Nordamerika', 'en': 'North America', 'es': 'Norteamérica', 'fr': 'Amérique du Nord', 'ja': '北アメリカ', 'pt-BR': 'América do Norte', 'ru': 'Северная Америка', 'zh-CN': '北美洲'}},
'country': {'geoname_id': 6252001, 'iso_code': 'US', 'names': {'de': 'USA', 'en': 'United States', 'es': 'Estados Unidos', 'fr': 'États-Unis', 'ja': 'アメリカ合衆国', 'pt-BR': 'Estados Unidos', 'ru': 'США', 'zh-CN': '美国'}},
'location': {'accuracy_radius': 1000, 'latitude': 40.7355, 'longitude': -74.1741, 'metro_code': 501, 'time_zone': 'America/New_York'},
'postal': {'code': '07102'},
'registered_country': {'geoname_id': 6252001, 'iso_code': 'US', 'names': {'de': 'USA', 'en': 'United States', 'es': 'Estados Unidos', 'fr': 'États-Unis', 'ja': 'アメリカ合衆国', 'pt-BR': 'Estados Unidos', 'ru': 'США', 'zh-CN': '美国'}},
'subdivisions': [{'geoname_id': 5101760, 'iso_code': 'NJ', 'names': {'en': 'New Jersey', 'es': 'Nueva Jersey', 'fr': 'New Jersey', 'ja': 'ニュージャージー州', 'pt-BR': 'Nova Jérsia', 'ru': 'Нью-Джерси', 'zh-CN': '新泽西州'}}]}
You can use GeoIP, which has both a free and a paid version. There is also a convenient Python API.
Use ipapi
API. It is much better than ip2geotools
(no requirement to install Visual C++ 14.0) or hostip.info API
(not very accurate) or others mentioned above that may not go beyond country.
import requests
arr1=["ipaddress1","ipaddress2",...,"ipaddress300"]
def get_location(ip):
ip_address = ip
response = requests.get(f'https://ipapi.co/{ip_address}/json/').json()
location_data = {
"ip": ip_address,
"city": response.get("city"),
"region": response.get("region"),
"country": response.get("country_name")
}
return location_data
for ip in arr1:
print(get_location(ip))
For visualization you have many options such as basemap, folium, geopandas and plotly.
Taken with thanks from https://www.freecodecamp.org/news/how-to-get-location-information-of-ip-address-using-python/
© 2022 - 2024 — McMap. All rights reserved.