I am trying to build a 4 x 4 sudoku solver by using the genetic algorithm. I have some issues with values converging to local minima. I am using a ranked approach and removing the bottom two ranked answer possibilities and replacing them with a crossover between the two highest ranked answer possibilities. For additional help avoiding local mininma, I am also using mutation. If an answer is not determined within a specific amount of generation, my population is filled with completely new and random state values. However, my algorithm seems to get stuck in local minima. As a fitness function, I am using:
(Total Amount of Open Squares * 7 (possible violations at each square; row, column, and box)) - total Violations
population is an ArrayList of integer arrays in which each array is a possible end state for sudoku based on the input. Fitness is determined for each array in the population.
Would someone be able to assist me in determining why my algorithm converges on local minima or perhaps recommend a technique to use to avoid local minima. Any help is greatly appreciated.
Fitness Function:
public int[] fitnessFunction(ArrayList<int[]> population)
{
int emptySpaces = this.blankData.size();
int maxError = emptySpaces*7;
int[] fitness = new int[populationSize];
for(int i=0; i<population.size();i++)
{
int[] temp = population.get(i);
int value = evaluationFunc(temp);
fitness[i] = maxError - value;
System.out.println("Fitness(i)" + fitness[i]);
}
return fitness;
}
Crossover Function:
public void crossover(ArrayList<int[]> population, int indexWeakest, int indexStrong, int indexSecStrong, int indexSecWeak)
{
int[] tempWeak = new int[16];
int[] tempStrong = new int[16];
int[] tempSecStrong = new int[16];
int[] tempSecWeak = new int[16];
tempStrong = population.get(indexStrong);
tempSecStrong = population.get(indexSecStrong);
tempWeak = population.get(indexWeakest);
tempSecWeak = population.get(indexSecWeak);
population.remove(indexWeakest);
population.remove(indexSecWeak);
int crossoverSite = random.nextInt(14)+1;
for(int i=0;i<tempWeak.length;i++)
{
if(i<crossoverSite)
{
tempWeak[i] = tempStrong[i];
tempSecWeak[i] = tempSecStrong[i];
}
else
{
tempWeak[i] = tempSecStrong[i];
tempSecWeak[i] = tempStrong[i];
}
}
mutation(tempWeak);
mutation(tempSecWeak);
population.add(tempWeak);
population.add(tempSecWeak);
for(int j=0; j<tempWeak.length;j++)
{
System.out.print(tempWeak[j] + ", ");
}
for(int j=0; j<tempWeak.length;j++)
{
System.out.print(tempSecWeak[j] + ", ");
}
}
Mutation Function:
public void mutation(int[] mutate)
{
if(this.blankData.size() > 2)
{
Blank blank = this.blankData.get(0);
int x = blank.getPosition();
Blank blank2 = this.blankData.get(1);
int y = blank2.getPosition();
Blank blank3 = this.blankData.get(2);
int z = blank3.getPosition();
int rando = random.nextInt(4) + 1;
if(rando == 2)
{
int rando2 = random.nextInt(4) + 1;
mutate[x] = rando2;
}
if(rando == 3)
{
int rando2 = random.nextInt(4) + 1;
mutate[y] = rando2;
}
if(rando==4)
{
int rando3 = random.nextInt(4) + 1;
mutate[z] = rando3;
}
}