Problem
Let's say you have a number of lists or arrays, let's say two for the sake of example :
(defparameter *arr* #(1 2 3))
(defparameter *list* '(4 5 6))
You can loop
over them using either across
or in
keywords :
(loop for elem across *arr* do (format t "~a" elem))
=> 123
(loop for elem in *list* do (format t "~a" elem))
=> 456
I want to be able to loop
over these arrays or lists using the same syntax. I am using SBCL and execution speed is a concern.
Using being the elements of
This syntax is nice, as it works regardless of its argument being a list
or array
.
(loop for elem being the elements of *arr* do (format t "~a" elem))
=> 123
(loop for elem being the elements of *list* do (format t "~a" elem))
=> 456
But its speed is horrendous. If we do a quick comparison by accessing lists or arrays of 100 elements 1M times :
(format t "# Test 1.1.1 : Accessing list of doubles with loop 'in': ") (terpri)
(let ((test-list (make-list 100 :initial-element 12.2d0))
(testvar 0d0))
(declare (optimize (speed 3))
(type list test-list)
(type double-float testvar))
(time (dotimes (it 1000000 t) (loop for el in test-list do
(setf testvar (the double-float el))))))
(format t "# Test 1.1.2 : Accessing list of doubles with loop 'elements': ") (terpri)
(let ((test-list (make-list 100 :initial-element 12.2d0))
(testvar 0d0))
(declare (optimize (speed 3))
(type list test-list)
(type double-float testvar))
(time (dotimes (it 1000000 t) (loop for el being the elements of test-list do
(setf testvar (the double-float el))))))
(format t "# Test 1.2.1 : Accessing simple-array of doubles using loop 'across' : ") (terpri)
(let ((test-array (make-array 100 :initial-element 12.2d0 :element-type 'double-float))
(testvar 0d0))
(declare (optimize (speed 3))
(type double-float testvar)
(type simple-array test-array))
(time (dotimes (it 1000000 t) (loop for el across test-array do
(setf testvar (the double-float el))))))
(format t "# Test 1.2.2 : Accessing simple-array of doubles using loop 'elements' : ") (terpri)
(let ((test-array (make-array 100 :initial-element 12.2d0 :element-type 'double-float))
(testvar 0d0))
(declare (optimize (speed 3))
(type double-float testvar)
(type simple-array test-array))
(time (dotimes (it 1000000 t) (loop for el being the elements of test-array do
(setf testvar (the double-float el))))))
It gives us :
# Test 1.1.1 : Accessing list of doubles with loop 'in':
Evaluation took:
0.124 seconds of real time
0.123487 seconds of total run time (0.123471 user, 0.000016 system)
99.19% CPU
445,008,960 processor cycles
672 bytes consed
# Test 1.1.2 : Accessing list of doubles with loop 'elements':
Evaluation took:
0.843 seconds of real time
0.841639 seconds of total run time (0.841639 user, 0.000000 system)
99.88% CPU
3,034,104,192 processor cycles
0 bytes consed
# Test 1.2.1 : Accessing simple-array of doubles using loop 'across' :
Evaluation took:
0.062 seconds of real time
0.062384 seconds of total run time (0.062384 user, 0.000000 system)
100.00% CPU
224,896,032 processor cycles
0 bytes consed
# Test 1.2.2 : Accessing simple-array of doubles using loop 'elements' :
Evaluation took:
1.555 seconds of real time
1.554472 seconds of total run time (1.541572 user, 0.012900 system)
[ Run times consist of 0.094 seconds GC time, and 1.461 seconds non-GC time. ]
99.94% CPU
5,598,161,100 processor cycles
1,600,032,848 bytes consed
I think it must use the elt
accessor ? Anyway the penalty in speed is unacceptable.
Trying to be smart with macros
I wrote something to be able to achieve my goal of having the same syntax for list
and array
. I think it's not great because it seems overly awkward, but here :
(defun forbuild (el-sym list-or-array list-or-array-sym)
"Outputs either :
* (for el-sym in list-or-array)
* (for el-sym across list-or-array)
Depending on type of list-or-array.
el-sym : symbol, eg. 'it1
list-or-array : declared, actual data for list or array
list-or-array-sym : symbol name for the table, to avoid writing the data in full
in the 'loop' call using eval.
Example call : (forbuild 'it1 arr 'arr)"
(cond ((typep list-or-array 'array)
`(for ,el-sym across ,list-or-array-sym))
((typep list-or-array 'list)
`(for ,el-sym in ,list-or-array-sym))))
(defun forbuild-l (l-elsyms l-lars l-larsyms)
"forbuild but over lists of things."
(let ((for-list nil)
(list-temp nil))
(loop for elem in l-elsyms
for lar in l-lars
for larsym in l-larsyms do
(setf list-temp (forbuild elem lar larsym))
(loop for word-temp in list-temp do
(push word-temp for-list)))
(nreverse for-list)))
(defun loop-expr (forlist body)
"Creates the expression ready to be evaluated to execute the loop.
forlist : List of symbols to be inserted syntactically. eg.
FOR IT1 ACROSS ARR1 FOR IT2 IN ARR2
body : all the expression after the 'for' clauses in the 'loop'."
`(loop ,@forlist ,@body))
(defmacro looparl (element list-or-array &rest body)
(let ((forlist (gensym)))
`(let ((,forlist (forbuild2-l (quote ,element)
(list ,@list-or-array)
(quote ,list-or-array))))
(loop-expr ,forlist (quote ,body)))))
Basically I build the right loop
syntax from the arguments. The version of looparl
given here can be called this way :
(let ((arr1 #(7 8 9))
(list2 (list 10 11 12)))
(looparl (it1 it2) (arr1 list2) do (format t "~a ~a" it1 it2) (terpri)))
=> (LOOP FOR IT1 ACROSS ARR1
FOR IT2 IN LIST2
DO (FORMAT T "~a ~a" IT1 IT2) (TERPRI))
The actual evaluation of this outputted expression is omitted in this example, because it doesn't work on non-global names. If we throw in an eval at the end of looparl
:
(defmacro looparl (element list-or-array &rest body)
(let ((forlist (gensym)))
`(let ((,forlist (forbuild2-l (quote ,element)
(list ,@list-or-array)
(quote ,list-or-array))))
(eval (loop-expr ,forlist (quote ,body))))))
And work on global variables, we see that we still have a speed issue, since there are evaluations happening at runtime :
(looparl (it1 it2) (*arr* *list*) for it from 100
do (format t "~a ~a ~a" it1 it2 it) (terpri))
=> 1 4 100
2 5 101
3 6 102
(time (dotimes (iter 1000 t) (looparl (it1 it2) (*arr* *list*) for it from 100
do (format t "~a ~a ~a" it1 it2 it) (terpri))))
=> Evaluation took:
1.971 seconds of real time
1.932610 seconds of total run time (1.892329 user, 0.040281 system)
[ Run times consist of 0.097 seconds GC time, and 1.836 seconds non-GC time. ]
98.07% CPU
1,000 forms interpreted
16,000 lambdas converted
7,096,353,696 processor cycles
796,545,680 bytes consed
The macros are evaluated each one at a time a thousand times. But surely the type is known at compile time no ? The type of syntax in looparl
is very nice, and I'd like to be able to use it without speed penalty.
I read this note in Peter Seibel's book Practical Common Lisp, chapter "Loop for Black Belts"
3 You may wonder why LOOP can't figure out whether it's looping over a list or a vector without needing different prepositions. This is another consequence of LOOP being a macro: the value of the list or vector won't be known until runtime, but LOOP, as a macro, has to generate code at compile time. And LOOP's designers wanted it to generate extremely efficient code. To be able to generate efficient code for looping across, say, a vector, it needs to know at compile time that the value will be a vector at runtime--thus, the different prepositions are needed.
Am I committing some big Common-Lisp nonsense ? How would you go about creating a working, quick looparl
?
Edit 1 : FOR
library
Thank you Ehvince for the reference to the FOR
library. The over
keyword in the for:for
function is indeed exactly what I'd need. However the benchmarks are really underwhelming :
(let ((test-list (make-list 100 :initial-element 12.2d0))
(testvar 0d0))
(declare (optimize (speed 3))
(type list test-list)
(type double-float testvar))
(time (dotimes (it 1000000 t)
(for:for ((el over test-list))
(setf testvar (the double-float el))))))
(let ((test-array (make-array 100 :initial-element 12.2d0))
(testvar 0d0))
(declare (optimize (speed 3))
(type simple-array test-array)
(type double-float testvar))
(time (dotimes (it 1000000 t)
(for:for ((el over test-array))
(setf testvar (the double-float el))))))
Evaluation took:
4.802 seconds of real time
4.794485 seconds of total run time (4.792492 user, 0.001993 system)
[ Run times consist of 0.010 seconds GC time, and 4.785 seconds non-GC time. ]
99.83% CPU
17,286,934,536 processor cycles
112,017,328 bytes consed
Evaluation took:
6.758 seconds of real time
6.747879 seconds of total run time (6.747879 user, 0.000000 system)
[ Run times consist of 0.004 seconds GC time, and 6.744 seconds non-GC time. ]
99.85% CPU
24,329,311,848 processor cycles
63,995,808 bytes consed
The speed of this library using the specialized keywords in
and across
is the same as for the standard loop
. But very slow with over
.
Edit 2 : map
and etypecase
Thank you sds and Rainer Joswig for the suggestions. It would indeed work for the simple case in which I would only have one array/list to iterate over. Let me tell you about one use case I had in mind : I was implementing a gnuplot wrapper, both as training and to have my own program in my toolkit. I wanted to take from the user lists or arrays indifferently to serve as series to pipe to gnuplot. This is why I need to be able to loop over multiple array/lists simultaneously + using the elegant loop clauses for iteration number etc.
In this use case (gnuplot wrapper), I only have two or three for
clauses in my loop
for each "data block", so I have thought of writing each combination depending on the type of input by hand and it is possible, but very awkward. And I'd be stuck if I had to do something like :
(loop for el1 in list1
for el2 across arr1
for el3 in list2
for el4 in list3
...)
With the list-i
and arr-i
being inputs. Another fallback plan for this use case is just to convert everything to arrays.
I thought that since it is quite easily conceptualized, I could write something flexible and fast once and for all, but there must be a reason why it is neither in the specs nor in SBCL-specific code.
being the elements of
is a non-standard (i.e., non-ANSI) extension to the loop macro. It is supported in SBCL, but I don't know what other implementations would be able to handle it. – Jaye