Actually, if the max number of values is infinite, you can use any lossless compression algorithm for a monochrome bitmap. IF you imagine a square with at least as many pixels as the number of possible values, you can map each value to a pixel (with a few to spare). Then you can represent white as the pixels that appeared and black for the others and use any compression algorithm if space is at a premium (that is certainly a problem that has been studied)
You can also store blocks. The worst case is the same in space O(n) but for that worst case you need that the number appeared have exactly 1 in between them. Once more numbers appear, then the storage will decrease:
I will write pseudocode and I will use a List, but you can always use a different structure
List changes // global
boolean addNumber(int number):
boolean appeared = false
it = changes.begin()
while it.hasNext():
if it.get() < number:
appeared != appeared
it = it.next()
else if it.get() == number:
if !appeared: return true
if it.next().get() == number + 1
it.next().remove() // Join 2 blocks
else
it.insertAfter(number + 1) // Insert split and create 2 blocks
it.remove()
return false
else: // it.get() > number
if appeared: return true
it.insertBefore(number)
if it.get() == number + 1:
it.remove() // Extend next block
else:
it.insertBefore(number + 1)
}
return false
}
What this code is the following: it stores a list of blocks. For each number that you add, it iterates over the list storing blocks of numbers that appeared and numbers that didn't. Let me illustrate with an example; I will add [) to illustrate which numbers in the block, the first number is included, the last is not.In the pseudocode it is replaced by the boolean appeared
. For instance, if you get the 5, 9, 6, 8, 7 (in this order) you will have the following sequences after each function:
[5,6)
[5,6),[9,10)
[5,7),[9,10)
[5,7),[8,10)
[5,10)
In the last value you keep a block of 5 numbers with only 2.