You might find this link from Charles Poynton's Gamma FAQ interesting:
'22. What are the I, B, L, and V components in HSI, HSB, HLS, and HSV?
To conform with the definition of luminance as being proportional to physical power, the I component of HSI should represent a linear-light quantity. The CIE has defined no objective measure for brightness, but it is clearly a perceptual quantity. Lightness is a perceptual quantity that has been quite precisely defined by the CIE. The CIE has not defined Value, but several different definitions are in use, such as Munsell Value, and all have a perceptual basis and are comparable to lightness.
In most formulations of HSI, HSB, HLS, and HSV used in computer graphics, the quantities are computed from R, G, and B primary components but no reference is made to the nonlinearity in the primary components, that is, the relationship of the primaries to linear light. So it is impossible to determine whether the calculated HSI, HSB, HLS, or HSV represents a physical or a perceptual quantity.
The brightness component of HSI, HSB, HLS, and HSV should be based on luminance, computed as a properly-weighted sum of red, green, and blue. But in the usual formulations, the brightness component is computed as either the maximum of the three components, or the average of the minimum and the maximum of the three. This highly nonlinear calculation introduces spokes into the hue circle.
Finally, the color produced by an RGB triple translated from HSI, HSB, HLS, or HSV depends on the chromaticity of the RGB primaries, but none of the usual formulations of HSI, HSB, HLS, or HSV takes primary chromaticity into account.
For these reasons, any use in computer graphics of I, B, L, and V quantities is suspect. For detail, see Frequently Asked Questions about Color.
I take that to mean that in all cases, you must convert to RGB to go between any of these formulations, and further that these formulations are somewhat poorly defined.