The implementation of critical sections in Windows has changed over the years, but it has always been a combination of user-mode and kernel calls.
The CRITICAL_SECTION is a structure that contains a user-mode updated values, a handle to a kernel-mode object - EVENT or something like that, and debug information.
EnterCriticalSection uses an interlocked test-and-set operation to acquire the lock. If successful, this is all that is required (almost, it also updates the owner thread). If the test-and-set operation fails to aquire, a longer path is used which usually requires waiting on a kernel object with WaitForSignleObject
. If you initialized with InitializeCriticalSectionAndSpinCount
then EnterCriticalSection
may spin an retry to acquire using interlocked operation in user-mode.
Below is a diassembly of the "fast" / uncontended path of EnterCriticialSection
in Windows 7 (64-bit) with some comments inline
0:000> u rtlentercriticalsection rtlentercriticalsection+35
ntdll!RtlEnterCriticalSection:
00000000`77ae2fc0 fff3 push rbx
00000000`77ae2fc2 4883ec20 sub rsp,20h
; RCX points to the critical section rcx+8 is the LockCount
00000000`77ae2fc6 f00fba710800 lock btr dword ptr [rcx+8],0
00000000`77ae2fcc 488bd9 mov rbx,rcx
00000000`77ae2fcf 0f83e9b1ffff jae ntdll!RtlEnterCriticalSection+0x31 (00000000`77ade1be)
; got the critical section - update the owner thread and recursion count
00000000`77ae2fd5 65488b042530000000 mov rax,qword ptr gs:[30h]
00000000`77ae2fde 488b4848 mov rcx,qword ptr [rax+48h]
00000000`77ae2fe2 c7430c01000000 mov dword ptr [rbx+0Ch],1
00000000`77ae2fe9 33c0 xor eax,eax
00000000`77ae2feb 48894b10 mov qword ptr [rbx+10h],rcx
00000000`77ae2fef 4883c420 add rsp,20h
00000000`77ae2ff3 5b pop rbx
00000000`77ae2ff4 c3 ret
So the bottom line is that if the thread does not need to block it will not use a system call, just an interlocked test-and-set operation. If blocking is required, there will be a system call. The release path also uses an interlocked test-and-set and may require a system call if other threads are blocked.
Compare this to Mutex which always requires a system call NtWaitForSingleObject
and NtReleaseMutant