I am using ets() and auto.arima() functions from forecast package to predict future values in R. Which criteria should be used to choose the best model between these two?
Following is the accuracy output from ets (data.ets) and auto.arima (data.ar).
> accuracy(data.ets)
ME RMSE MAE MPE MAPE MASE
0.6995941 4.1325246 3.2634246 0.5402465 2.7777897 0.5573740
> accuracy(data.ar)
ME RMSE MAE MPE MAPE MASE
-0.8215465 4.3640818 3.1070931 -0.7404200 2.5783128 0.5306735
and the AIC of each model are as follows
> ETSfit$aic
[1] 613.8103
> ARIMAfit$aic
[1] 422.5597
Following is the fitted model of both ets and auto.arima
> ETSfit
ETS(A,N,A)
Call:
ets(y = data.ts)
Smoothing parameters:
alpha = 0.5449
gamma = 1e-04
Initial states:
l = 95.8994
s=6.3817 -3.1792 6.8525 3.218 -3.4445 -1.2408
-4.5852 0.4434 1.7133 0.8123 -1.28 -5.6914
sigma: 4.1325
AIC AICc BIC
613.8103 620.1740 647.3326
> ARIMAfit
Series: data.ts
ARIMA(1,1,1)(0,1,1)[12]
Coefficients:
ar1 ma1 sma1
0.3808 -0.7757 -0.7276
s.e. 0.1679 0.1104 0.2675
sigma^2 estimated as 22.68: log likelihood=-207.28
AIC=422.56 AICc=423.19 BIC=431.44
Kindly help.