This problem calls for some straightforward recursive non-deterministic programming.
- We start with a given amount, and a given list of bill denominations, with unlimited amounts of each bill, apparently (otherwise, it'd be a different problem).
- At each point in time, we can either use the biggest bill, or not.
- If we use it, the total sum lessens by the bill's value.
- If the total is 0, we've got our solution!
- If the total is negative, it is invalid, so we should abandon this path.
The code here will follow another answer of mine, which finds out the total amount of solutions (which are more than one, for your example as well). We will just have to mind the solutions themselves as well, whereas the code mentioned above only counted them.
We can code this one as a recursive-backtracking procedure, calling a callback with each successfully found solution from inside the deepest level of recursion (tantamount to the most deeply nested loop in the nested loops structure created with recursion, which is the essence of recursive backtracking):
(define (change sum bills callback)
(let loop ([sum sum] [sol '()] [bills bills]) ; "sol" for "solution"
(cond
((zero? sum) (callback sol)) ; process a solution found
((< sum 0) #f)
((null? bills) #f)
(else
(apply
(lambda (b . bs) ; the "loop":
;; 1. ; either use the first
(loop (- sum b) (cons b sol) bills) ; denomination,
;; 2. ; or,
(loop sum sol bs)) ; after backtracking, don't!
bills)))))
It is to be called through e.g. one of
;; construct `the-callback` for `solve` and call
;; (solve ...params the-callback)
;; where `the-callback` is an exit continuation
(define (first-solution solve . params)
(call/cc (lambda (return)
(apply solve (append params ; use `return` as
(list return)))))) ; the callback
(define (n-solutions n solve . params) ; n assumed an integer
(let ([res '()]) ; n <= 0 gets ALL solutions
(call/cc (lambda (break)
(apply solve (append params
(list (lambda (sol)
(set! res (cons sol res))
(set! n (- n 1))
(cond ((zero? n) (break)))))))))
(reverse res)))
Testing,
> (first-solution change 406 (list 100 10 5 2))
'(2 2 2 100 100 100 100)
> (n-solutions 7 change 415 (list 100 10 5 2 1))
'((5 10 100 100 100 100)
(1 2 2 10 100 100 100 100)
(1 1 1 2 10 100 100 100 100)
(1 1 1 1 1 10 100 100 100 100)
(5 5 5 100 100 100 100)
(1 2 2 5 5 100 100 100 100)
(1 1 1 2 5 5 100 100 100 100))
Regarding how this code is structured, cf. How to generate all the permutations of elements in a list one at a time in Lisp? It creates nested loops with the solution being accessible in the innermost loop's body.
Regarding how to code up a non-deterministic algorithm (making all possible choices at once) in a proper functional way, see How to do a powerset in DrRacket? and How to find partitions of a list in Scheme.
set!
"? – Appellate