I am working on a binary classification problem in Weka with a highly imbalanced data set (90% in one category and 10% in the other). I first applied SMOTE (http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/node6.html) to the entire data set to even out the categories and then performed 10-fold cross-validation over the newly obtained data. I found (overly?) optimistic results with F1 around 90%.
Is this due to oversampling? Is it bad practice to perform cross-validation on data on which SMOTE is applied? Are there any ways to solve this problem?