The 'getattr' answer works, but there is another option which is slightly faster.
idx = {name: i for i, name in enumerate(list(df), start=1)}
for row in df.itertuples(name=None):
example_value = row[idx['product_price']]
Explanation
Make a dictionary mapping the column names to the row position. Call 'itertuples' with "name=None". Then access the desired values in each tuple using the
indexes obtained using the column name from the dictionary.
- Make a dictionary to find the indexes.
idx = {name: i for i, name in enumerate(list(df), start=1)}
- Use the dictionary to access the desired values by name in the row tuples
for row in df.itertuples(name=None):
example_value = row[idx['product_price']]
Note: Use start=0
in enumerate
if you call itertuples with index=False
Here is a working example showing both methods and the timing of both methods.
import numpy as np
import pandas as pd
import timeit
data_length = 3 * 10**5
fake_data = {
"id_code": list(range(data_length)),
"letter_code": np.random.choice(list('abcdefgz'), size=data_length),
"pine_cones": np.random.randint(low=1, high=100, size=data_length),
"area": np.random.randint(low=1, high=100, size=data_length),
"temperature": np.random.randint(low=1, high=100, size=data_length),
"elevation": np.random.randint(low=1, high=100, size=data_length),
}
df = pd.DataFrame(fake_data)
def iter_with_idx():
result_data = []
idx = {name: i for i, name in enumerate(list(df), start=1)}
for row in df.itertuples(name=None):
row_calc = row[idx['pine_cones']] / row[idx['area']]
result_data.append(row_calc)
return result_data
def iter_with_getaatr():
result_data = []
for row in df.itertuples():
row_calc = getattr(row, 'pine_cones') / getattr(row, 'area')
result_data.append(row_calc)
return result_data
dict_idx_method = timeit.timeit(iter_with_idx, number=100)
get_attr_method = timeit.timeit(iter_with_getaatr, number=100)
print(f'Dictionary index Method {dict_idx_method:0.4f} seconds')
print(f'Get attribute method {get_attr_method:0.4f} seconds')
Result:
Dictionary index Method 49.1814 seconds
Get attribute method 80.1912 seconds
I assume the difference is due to lower overhead in creating a tuple vs a named tuple and also lower overhead in accessing it by the index rather than getattr but both of those are just guesses. If anyone knows better please comment.
I have not explored how the number of columns vs number of rows effects the timing results.
getattr(my_car, field)
ormy_car._asdict()[field]
. – Brittneemycar[field]
but then you might iterate usingfor row in data
. – Hermes