Here's a variant that accepts both materialized and non-materialized sequences. It automatically determines whether or not it's monotonic
, and if so, its direction (i.e. increasing
or decreasing
) and strict
ness. Inline comments are provided to help the reader. Similarly for test-cases provided at the end.
def isMonotonic(seq):
"""
seq.............: - A Python sequence, materialized or not.
Returns.........:
(True,0,True): - Mono Const, Strict: Seq empty or 1-item.
(True,0,False): - Mono Const, Not-Strict: All 2+ Seq items same.
(True,+1,True): - Mono Incr, Strict.
(True,+1,False): - Mono Incr, Not-Strict.
(True,-1,True): - Mono Decr, Strict.
(True,-1,False): - Mono Decr, Not-Strict.
(False,None,None) - Not Monotonic.
"""
items = iter(seq) # Ensure iterator (i.e. that next(...) works).
prev_value = next(items, None) # Fetch 1st item, or None if empty.
if prev_value == None: return (True,0,True) # seq was empty.
# ============================================================
# The next for/loop scans until it finds first value-change.
# ============================================================
# Ex: [3,3,3,78,...] --or- [-5,-5,-5,-102,...]
# ============================================================
# -- If that 'change-value' represents an Increase or Decrease,
# then we know to look for Monotonically Increasing or
# Decreasing, respectively.
# -- If no value-change is found end-to-end (e.g. [3,3,3,...3]),
# then it's Monotonically Constant, Non-Strict.
# -- Finally, if the sequence was exhausted above, which means
# it had exactly one-element, then it Monotonically Constant,
# Strict.
# ============================================================
isSequenceExhausted = True
curr_value = prev_value
for item in items:
isSequenceExhausted = False # Tiny inefficiency.
if item == prev_value: continue
curr_value = item
break
else:
return (True,0,True) if isSequenceExhausted else (True,0,False)
# ============================================================
# ============================================================
# If we tricked down to here, then none of the above
# checked-cases applied (i.e. didn't short-circuit and
# 'return'); so we continue with the final step of
# iterating through the remaining sequence items to
# determine Monotonicity, direction and strictness.
# ============================================================
strict = True
if curr_value > prev_value: # Scan for Increasing Monotonicity.
for item in items:
if item < curr_value: return (False,None,None)
if item == curr_value: strict = False # Tiny inefficiency.
curr_value = item
return (True,+1,strict)
else: # Scan for Decreasing Monotonicity.
for item in items:
if item > curr_value: return (False,None,None)
if item == curr_value: strict = False # Tiny inefficiency.
curr_value = item
return (True,-1,strict)
# ============================================================
# Test cases ...
assert isMonotonic([1,2,3,4]) == (True,+1,True)
assert isMonotonic([4,3,2,1]) == (True,-1,True)
assert isMonotonic([-1,-2,-3,-4]) == (True,-1,True)
assert isMonotonic([]) == (True,0,True)
assert isMonotonic([20]) == (True,0,True)
assert isMonotonic([-20]) == (True,0,True)
assert isMonotonic([1,1]) == (True,0,False)
assert isMonotonic([1,-1]) == (True,-1,True)
assert isMonotonic([1,-1,-1]) == (True,-1,False)
assert isMonotonic([1,3,3]) == (True,+1,False)
assert isMonotonic([1,2,1]) == (False,None,None)
assert isMonotonic([0,0,0,0]) == (True,0,False)
I suppose this could be more Pythonic
, but it's tricky because it avoids creating intermediate collections (e.g. list
, genexps
, etc); as well as employs a fall/trickle-through
and short-circuit
approach to filter through the various cases: E.g. Edge-sequences (like empty or one-item sequences; or sequences with all identical items); Identifying increasing or decreasing monotonicity, strictness, and so on. I hope it helps.