I am learning and playing with SIMD functions and wrote a simple program, that compares number of vector addition instruction it can run in 1 second compared with normal scalar addition. I found that SIMD performs relatively better at lower optimization level and consistently much worse at higher optimization levels, and I want to know the reason I used both MSVC and gcc, it is the same story. The following result is from Ryzen 7 CPU. I also tested on a Intel platform, pretty much the same story too.
#include <iostream>
#include <numeric>
#include <chrono>
#include <iterator>
#include <thread>
#include <atomic>
#include <vector>
#include <immintrin.h>
int main()
{
const auto threadLimit = std::thread::hardware_concurrency() - 1; //for running main()
for (auto i = 1; i <= threadLimit; ++i)
{
std::cerr << "Testing " << i << " threads: ";
std::atomic<unsigned long long> sumScalar {};
std::atomic<unsigned long long> loopScalar {};
std::atomic<unsigned long long> sumSimd {};
std::atomic<unsigned long long> loopSimd {};
std::atomic_bool stopFlag{ false };
std::vector<std::thread> threads;
threads.reserve(i);
{
for (auto j = 0; j < i; ++j)
threads.emplace_back([&]
{
uint32_t local{};
uint32_t loop{};
while (!stopFlag)
{
++local;
++loop; //removed this(see EDIT)
}
sumScalar += local;
loopScalar += loop;
});
std::this_thread::sleep_for(std::chrono::seconds{ 1 });
stopFlag = true;
for (auto& thread : threads)
thread.join();
}
threads.clear();
stopFlag = false;
{
for (auto j = 0; j < i; ++j)
threads.emplace_back([&]
{
const auto oneVec = _mm256_set1_epi32(1);
auto local = _mm256_set1_epi32(0);
uint32_t inc{};
while (!stopFlag)
{
local = _mm256_add_epi32(oneVec, local);
++inc; //removed this(see EDIT)
}
sumSimd += std::accumulate(reinterpret_cast<uint32_t*>(&local), reinterpret_cast<uint32_t*>(&local) + 8, uint64_t{});
loopSimd += inc;
});
std::this_thread::sleep_for(std::chrono::seconds{ 1 });
stopFlag = true;
for (auto& thread : threads)
thread.join();
}
std::cout << "Sum: "<<sumSimd <<" / "<<sumScalar <<"("<<100.0*sumSimd/sumScalar<<"%)\t"<<"Loop: "<<loopSimd<<" / "<<loopScalar<<"("<< 100.0*loopSimd/loopScalar<<"%)\n";
// SIMD/Scalar, higher value means SIMD better
}
}
With g++ -O0 -march=native -lpthread
, I got:
Testing 1 threads: Sum: 1004405568 / 174344207(576.105%) Loop: 125550696 / 174344207(72.0131%)
Testing 2 threads: Sum: 2001473960 / 348079929(575.004%) Loop: 250184245 / 348079929(71.8755%)
Testing 3 threads: Sum: 2991335152 / 521830834(573.238%) Loop: 373916894 / 521830834(71.6548%)
Testing 4 threads: Sum: 3892119680 / 693704725(561.063%) Loop: 486514960 / 693704725(70.1329%)
Testing 5 threads: Sum: 4957263080 / 802362140(617.834%) Loop: 619657885 / 802362140(77.2292%)
Testing 6 threads: Sum: 5417700112 / 953587414(568.139%) Loop: 677212514 / 953587414(71.0174%)
Testing 7 threads: Sum: 6078496824 / 1067533241(569.396%) Loop: 759812103 / 1067533241(71.1746%)
Testing 8 threads: Sum: 6679841000 / 1196224828(558.41%) Loop: 834980125 / 1196224828(69.8013%)
Testing 9 threads: Sum: 7396623960 / 1308004474(565.489%) Loop: 924577995 / 1308004474(70.6861%)
Testing 10 threads: Sum: 8158849904 / 1416026963(576.179%) Loop: 1019856238 / 1416026963(72.0224%)
Testing 11 threads: Sum: 8868695984 / 1556964234(569.615%) Loop: 1108586998 / 1556964234(71.2018%)
Testing 12 threads: Sum: 9441092968 / 1655554694(570.268%) Loop: 1180136621 / 1655554694(71.2835%)
Testing 13 threads: Sum: 9530295080 / 1689916907(563.951%) Loop: 1191286885 / 1689916907(70.4938%)
Testing 14 threads: Sum: 10444142536 / 1805583762(578.436%) Loop: 1305517817 / 1805583762(72.3045%)
Testing 15 threads: Sum: 10834255144 / 1926575218(562.358%) Loop: 1354281893 / 1926575218(70.2948%)
With g++ -O3 -march=native -lpthread
, I got:
Testing 1 threads: Sum: 2933270968 / 3112671000(94.2365%) Loop: 366658871 / 3112671000(11.7796%)
Testing 2 threads: Sum: 5839842040 / 6177278029(94.5375%) Loop: 729980255 / 6177278029(11.8172%)
Testing 3 threads: Sum: 8775103584 / 9219587924(95.1789%) Loop: 1096887948 / 9219587924(11.8974%)
Testing 4 threads: Sum: 11350253944 / 10210948580(111.158%) Loop: 1418781743 / 10210948580(13.8947%)
Testing 5 threads: Sum: 14487451488 / 14623220822(99.0715%) Loop: 1810931436 / 14623220822(12.3839%)
Testing 6 threads: Sum: 17141556576 / 14437058094(118.733%) Loop: 2142694572 / 14437058094(14.8416%)
Testing 7 threads: Sum: 19883362288 / 18313186637(108.574%) Loop: 2485420286 / 18313186637(13.5718%)
Testing 8 threads: Sum: 22574437968 / 17115166001(131.897%) Loop: 2821804746 / 17115166001(16.4872%)
Testing 9 threads: Sum: 25356792368 / 18332200070(138.318%) Loop: 3169599046 / 18332200070(17.2898%)
Testing 10 threads: Sum: 28079398984 / 20747150935(135.341%) Loop: 3509924873 / 20747150935(16.9176%)
Testing 11 threads: Sum: 30783433560 / 21801526415(141.199%) Loop: 3847929195 / 21801526415(17.6498%)
Testing 12 threads: Sum: 33420443880 / 22794998080(146.613%) Loop: 4177555485 / 22794998080(18.3266%)
Testing 13 threads: Sum: 35989535640 / 23596768252(152.519%) Loop: 4498691955 / 23596768252(19.0649%)
Testing 14 threads: Sum: 38647578408 / 23796083111(162.412%) Loop: 4830947301 / 23796083111(20.3014%)
Testing 15 threads: Sum: 41148330392 / 24252804239(169.664%) Loop: 5143541299 / 24252804239(21.208%)
EDIT: After removing the loop
variable, leaving just local
in both cases (see edit in code), still the same result.
EDIT2: The results above is using GCC 9.3 on Ubuntu. I switched to GCC 10.2 on Windows (mingw), and it shows nice scaling see below (result is the original code). Pretty much can conclude it's MSVC and GCC older version's problem?
Testing 1 threads: Sum: 23752640416 / 3153263747(753.272%) Loop: 2969080052 / 3153263747(94.159%)
Testing 2 threads: Sum: 46533874656 / 6012052456(774.01%) Loop: 5816734332 / 6012052456(96.7512%)
Testing 3 threads: Sum: 66076900784 / 9260324764(713.548%) Loop: 8259612598 / 9260324764(89.1936%)
Testing 4 threads: Sum: 92216030528 / 12229625883(754.038%) Loop: 11527003816 / 12229625883(94.2548%)
Testing 5 threads: Sum: 111822357864 / 14439219677(774.435%) Loop: 13977794733 / 14439219677(96.8044%)
Testing 6 threads: Sum: 122858189272 / 17693796489(694.357%) Loop: 15357273659 / 17693796489(86.7947%)
Testing 7 threads: Sum: 148478021656 / 19618236169(756.837%) Loop: 18559752707 / 19618236169(94.6046%)
Testing 8 threads: Sum: 156931719736 / 19770409566(793.771%) Loop: 19616464967 / 19770409566(99.2213%)
Testing 9 threads: Sum: 143331726552 / 20753115024(690.652%) Loop: 17916465819 / 20753115024(86.3315%)
Testing 10 threads: Sum: 143541178880 / 20331801415(705.993%) Loop: 17942647360 / 20331801415(88.2492%)
Testing 11 threads: Sum: 160425817888 / 22209102603(722.343%) Loop: 20053227236 / 22209102603(90.2928%)
Testing 12 threads: Sum: 157095281392 / 23178532051(677.762%) Loop: 19636910174 / 23178532051(84.7202%)
Testing 13 threads: Sum: 156015224880 / 23818567634(655.015%) Loop: 19501903110 / 23818567634(81.8769%)
Testing 14 threads: Sum: 145464754912 / 23950304389(607.361%) Loop: 18183094364 / 23950304389(75.9201%)
Testing 15 threads: Sum: 149279587872 / 23585183977(632.938%) Loop: 18659948484 / 23585183977(79.1172%)
-O3
compared to-O0
, but SIMD instructions runs relatively much slower (means scalar improves much more, while SIMD improves less) relative to scalar instruction at-O3
. – Braceloop
variable. – BracestopFlag
would effectively count as optimizing away reads; vectorizing is like unrolling and then rolling up into a vector. I thought that might explain a-O2
vs.-O3
difference, but the question actually tested-O0
debug mode. That wasn't what I expected from "higher" optimization. You can say that-O0
isn't truly "no optimization" because GCC always does stuff within expressions, and/or the phrase is meaningless, but-O0
has different bottlenecks. – Hackamoreuint32_t&
onto__m256i
(a GNU C native vector typedef based onunsigned long long
)? Or maybe there's a hyperthreading / SMT difference due to-O0
code having a latency bottleneck vs.-O3
code having a throughput bottleneck. – Hackamore-O3 -march=skylake
, Arch GNU/Linux, energy_performance_preference=balance_power (max clocks = 3.9GHz with any # of cores active). With++loop
commented, I get the expected 800 +- 1 %, with scalar and vector loops having the same number of uops. (4, probably running at 1 iteration per cycle). With an extrainc
in the SIMD loop, it becomes 5 uops, and probably suffers from some nasty front-end effect. What exact CPU models did you test on? Was it Zen1 wherevpaddd ymm
decodes to 2 uops? – Hackamore-S
assembly output with-O3 -march=native
flag without the loop variable in both cases, from my machine here. I am using a Ryzen 1700 CPU, with g++ 9.3. – Brace-O3 -march=native -lpthread
flag – Braceinc eax
! Reproducible on Godbolt godbolt.org/z/G73TEj. That's really surprising for-O3
, and a missed optimization because GCC10 doesn't do that. And apparently the store-forwarding latency bottleneck is almost exactly 8x longer than the scalar loop's 1/clock speed. – Hackamorelocal2
etc to increase the work load then it just multiplies the result by 4 later. E.g. this is just bad comparison. – Teacher++
vs_mm256_add_epi32
depends on surrounding code and isn't something you can measure once and apply everywhere. But it did reveal an interesting GCC9 missed optimization. – Hackamore