With your array:
In [236]: arr1 = np.array([[1,2,3],[2,3,4]], dtype=[("x", "f8"),("y", "f8")])
In [237]: arr1
Out[237]:
array([[(1., 1.), (2., 2.), (3., 3.)],
[(2., 2.), (3., 3.), (4., 4.)]], dtype=[('x', '<f8'), ('y', '<f8')])
In [238]: arr1['x']
Out[238]:
array([[1., 2., 3.],
[2., 3., 4.]])
Normally the data for a structured array is provided in the form a list(s) of tuples., same as displayed in Out[237]
. Without the tuples np.array
assigns the same value to both fields.
You have to do math on each field separately:
In [239]: arr1['y'] *= 10
In [240]: arr1
Out[240]:
array([[(1., 10.), (2., 20.), (3., 30.)],
[(2., 20.), (3., 30.), (4., 40.)]],
dtype=[('x', '<f8'), ('y', '<f8')])
Math operations are defined for simple dtypes like int
and float
, and uses compiled code where possible.
This error means that the add
ufunc
has not been defined for this compound dtype. And I think that's true for all compound dtypes.
In [242]: arr1 + arr1
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-242-345397c600ce> in <module>()
----> 1 arr1 + arr1
TypeError: ufunc 'add' did not contain a loop with signature matching types dtype([('x', '<f8'), ('y', '<f8')]) dtype([('x', '<f8'), ('y', '<f8')]) dtype([('x', '<f8'), ('y', '<f8')])
Since the fields in this case have the same base dtype, we can define another compound dtype that can 'view' it:
In [243]: dt2 = np.dtype([('xy', 'f8', 2)])
In [244]: arr2 = arr1.view(dt2)
In [245]: arr2
Out[245]:
array([[([ 1., 10.],), ([ 2., 20.],), ([ 3., 30.],)],
[([ 2., 20.],), ([ 3., 30.],), ([ 4., 40.],)]],
dtype=[('xy', '<f8', (2,))])
In [246]: arr2['xy']
Out[246]:
array([[[ 1., 10.],
[ 2., 20.],
[ 3., 30.]],
[[ 2., 20.],
[ 3., 30.],
[ 4., 40.]]])
Math on that field will be seen in the original array:
In [247]: arr2['xy'] += .1
In [248]: arr2
Out[248]:
array([[([ 1.1, 10.1],), ([ 2.1, 20.1],), ([ 3.1, 30.1],)],
[([ 2.1, 20.1],), ([ 3.1, 30.1],), ([ 4.1, 40.1],)]],
dtype=[('xy', '<f8', (2,))])
In [249]: arr1
Out[249]:
array([[(1.1, 10.1), (2.1, 20.1), (3.1, 30.1)],
[(2.1, 20.1), (3.1, 30.1), (4.1, 40.1)]],
dtype=[('x', '<f8'), ('y', '<f8')])
We can also view
it as a simple dtype, but will have to adjust the shape:
In [250]: arr3 = arr1.view('f8')
In [251]: arr3
Out[251]:
array([[ 1.1, 10.1, 2.1, 20.1, 3.1, 30.1],
[ 2.1, 20.1, 3.1, 30.1, 4.1, 40.1]])
In [252]: arr3.reshape(2,3,2)
Out[252]:
array([[[ 1.1, 10.1],
[ 2.1, 20.1],
[ 3.1, 30.1]],
[[ 2.1, 20.1],
[ 3.1, 30.1],
[ 4.1, 40.1]]])
arr.view(np.float32).reshape(arr.shape + (-1,))
I think it is similar to @Herwig solution – Domesticx
andy
values repeated. @JonnyCrunch s point is that in some cases a structured array can beviewed
as a uniform simple dtype, but you have to watch the shape. – Dehydrogenateview
idea, it is possible to define adtype
with overlapping fields. In this case a dtype that defines bothx
andy
, and anxy
field that occupies the same slots. IN that case you could do math onarr['xy']
and see the results in thex
,y
fields. But we'd have to study thedtype
documentation to do that right. – Dehydrogenate